$$\lim_{x \to \infty}\left(\sqrt{x} \log{\left(x \right)}\right) = \infty$$ $$\lim_{x \to 0^-}\left(\sqrt{x} \log{\left(x \right)}\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\sqrt{x} \log{\left(x \right)}\right) = 0$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(\sqrt{x} \log{\left(x \right)}\right) = 0$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\sqrt{x} \log{\left(x \right)}\right) = 0$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(\sqrt{x} \log{\left(x \right)}\right) = \infty i$$ More at x→-oo