Detail solution
-
Let .
-
The derivative of is .
-
Then, apply the chain rule. Multiply by :
-
The derivative of is .
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$\frac{1}{x \log{\left(x \right)}}$$
The second derivative
[src]
/ 1 \
-|1 + ------|
\ log(x)/
--------------
2
x *log(x)
$$- \frac{1 + \frac{1}{\log{\left(x \right)}}}{x^{2} \log{\left(x \right)}}$$
The third derivative
[src]
2 3
2 + ------- + ------
2 log(x)
log (x)
--------------------
3
x *log(x)
$$\frac{2 + \frac{3}{\log{\left(x \right)}} + \frac{2}{\log{\left(x \right)}^{2}}}{x^{3} \log{\left(x \right)}}$$