Mister Exam

Other calculators:


4*x/sin(2*x)

Limit of the function 4*x/sin(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  4*x   \
 lim |--------|
x->oo\sin(2*x)/
$$\lim_{x \to \infty}\left(\frac{4 x}{\sin{\left(2 x \right)}}\right)$$
Limit((4*x)/sin(2*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
     /  4*x   \
 lim |--------|
x->oo\sin(2*x)/
$$\lim_{x \to \infty}\left(\frac{4 x}{\sin{\left(2 x \right)}}\right)$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{4 x}{\sin{\left(2 x \right)}}\right)$$
$$\lim_{x \to 0^-}\left(\frac{4 x}{\sin{\left(2 x \right)}}\right) = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{4 x}{\sin{\left(2 x \right)}}\right) = 2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{4 x}{\sin{\left(2 x \right)}}\right) = \frac{4}{\sin{\left(2 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{4 x}{\sin{\left(2 x \right)}}\right) = \frac{4}{\sin{\left(2 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{4 x}{\sin{\left(2 x \right)}}\right)$$
More at x→-oo
The graph
Limit of the function 4*x/sin(2*x)