Mister Exam

Other calculators:


sin(4*x)/(3*x)

Limit of the function sin(4*x)/(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(4*x)\
 lim |--------|
x->0+\  3*x   /
limx0+(sin(4x)3x)\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right)
Limit(sin(4*x)/((3*x)), x, 0)
Detail solution
Let's take the limit
limx0+(sin(4x)3x)\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right)
Do replacement
u=4xu = 4 x
then
limx0+(sin(4x)3x)=limu0+(4sin(u)3u)\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right) = \lim_{u \to 0^+}\left(\frac{4 \sin{\left(u \right)}}{3 u}\right)
=
4limu0+(sin(u)u)3\frac{4 \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)}{3}
The limit
limu0+(sin(u)u)\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)
is first remarkable limit, is equal to 1.

The final answer:
limx0+(sin(4x)3x)=43\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right) = \frac{4}{3}
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+sin(4x)=0\lim_{x \to 0^+} \sin{\left(4 x \right)} = 0
and limit for the denominator is
limx0+(3x)=0\lim_{x \to 0^+}\left(3 x\right) = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(sin(4x)3x)\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right)
=
Let's transform the function under the limit a few
limx0+(sin(4x)3x)\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right)
=
limx0+(ddxsin(4x)ddx3x)\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(4 x \right)}}{\frac{d}{d x} 3 x}\right)
=
limx0+(4cos(4x)3)\lim_{x \to 0^+}\left(\frac{4 \cos{\left(4 x \right)}}{3}\right)
=
limx0+43\lim_{x \to 0^+} \frac{4}{3}
=
limx0+43\lim_{x \to 0^+} \frac{4}{3}
=
43\frac{4}{3}
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-10102-2
Rapid solution [src]
4/3
43\frac{4}{3}
One‐sided limits [src]
     /sin(4*x)\
 lim |--------|
x->0+\  3*x   /
limx0+(sin(4x)3x)\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right)
4/3
43\frac{4}{3}
= 1.33333333333333
     /sin(4*x)\
 lim |--------|
x->0-\  3*x   /
limx0(sin(4x)3x)\lim_{x \to 0^-}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right)
4/3
43\frac{4}{3}
= 1.33333333333333
= 1.33333333333333
Other limits x→0, -oo, +oo, 1
limx0(sin(4x)3x)=43\lim_{x \to 0^-}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right) = \frac{4}{3}
More at x→0 from the left
limx0+(sin(4x)3x)=43\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right) = \frac{4}{3}
limx(sin(4x)3x)=0\lim_{x \to \infty}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right) = 0
More at x→oo
limx1(sin(4x)3x)=sin(4)3\lim_{x \to 1^-}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right) = \frac{\sin{\left(4 \right)}}{3}
More at x→1 from the left
limx1+(sin(4x)3x)=sin(4)3\lim_{x \to 1^+}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right) = \frac{\sin{\left(4 \right)}}{3}
More at x→1 from the right
limx(sin(4x)3x)=0\lim_{x \to -\infty}\left(\frac{\sin{\left(4 x \right)}}{3 x}\right) = 0
More at x→-oo
Numerical answer [src]
1.33333333333333
1.33333333333333
The graph
Limit of the function sin(4*x)/(3*x)