Mister Exam

Other calculators:


sin(4*x)/sin(2*x)

Limit of the function sin(4*x)/sin(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(4*x)\
 lim |--------|
x->0+\sin(2*x)/
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right)$$
Limit(sin(4*x)/sin(2*x), x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right)$$
transform
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right) = \lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{x} \frac{x}{\sin{\left(2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{x}\right) \lim_{x \to 0^+}\left(\frac{x}{\sin{\left(2 x \right)}}\right)$$
=
Do replacement
$$u = 4 x$$
and
$$v = 2 x$$
then
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right) = \lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{x}\right) \lim_{x \to 0^+}\left(\frac{x}{\sin{\left(2 x \right)}}\right)$$
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right) = \lim_{u \to 0^+}\left(\frac{4 \sin{\left(u \right)}}{u}\right) \lim_{v \to 0^+}\left(\frac{v}{2 \sin{\left(v \right)}}\right)$$
=
$$2 \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right) \lim_{v \to 0^+}\left(\frac{v}{\sin{\left(v \right)}}\right)$$
=
$$2 \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right) \left(\lim_{v \to 0^+}\left(\frac{\sin{\left(v \right)}}{v}\right)\right)^{-1}$$
The limit
$$\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)$$
and
$$\lim_{v \to 0^+}\left(\frac{\sin{\left(v \right)}}{v}\right)$$
is first remarkable limit, is equal to 1.
then
=
$$2 \left(\lim_{v \to 0^+}\left(\frac{\sin{\left(v \right)}}{v}\right)\right)^{-1}$$
=
$$2$$

The final answer:
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right) = 2$$
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sin{\left(4 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \sin{\left(2 x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(4 x \right)}}{\frac{d}{d x} \sin{\left(2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{2 \cos{\left(4 x \right)}}{\cos{\left(2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+} 2$$
=
$$\lim_{x \to 0^+} 2$$
=
$$2$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     /sin(4*x)\
 lim |--------|
x->0+\sin(2*x)/
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right)$$
2
$$2$$
= 2.0
     /sin(4*x)\
 lim |--------|
x->0-\sin(2*x)/
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right)$$
2
$$2$$
= 2.0
= 2.0
Rapid solution [src]
2
$$2$$
Numerical answer [src]
2.0
2.0
The graph
Limit of the function sin(4*x)/sin(2*x)