Mister Exam

Other calculators:


5^(2+x)

Limit of the function 5^(2+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      2 + x
 lim 5     
x->oo      
limx5x+2\lim_{x \to \infty} 5^{x + 2}
Limit(5^(2 + x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100250000000
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx5x+2=\lim_{x \to \infty} 5^{x + 2} = \infty
limx05x+2=25\lim_{x \to 0^-} 5^{x + 2} = 25
More at x→0 from the left
limx0+5x+2=25\lim_{x \to 0^+} 5^{x + 2} = 25
More at x→0 from the right
limx15x+2=125\lim_{x \to 1^-} 5^{x + 2} = 125
More at x→1 from the left
limx1+5x+2=125\lim_{x \to 1^+} 5^{x + 2} = 125
More at x→1 from the right
limx5x+2=0\lim_{x \to -\infty} 5^{x + 2} = 0
More at x→-oo
The graph
Limit of the function 5^(2+x)