Mister Exam

Other calculators:


1/(-1+2*n)

Limit of the function 1/(-1+2*n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1    
 lim --------
n->oo-1 + 2*n
limn12n1\lim_{n \to \infty} \frac{1}{2 n - 1}
Limit(1/(-1 + 2*n), n, oo, dir='-')
Detail solution
Let's take the limit
limn12n1\lim_{n \to \infty} \frac{1}{2 n - 1}
Let's divide numerator and denominator by n:
limn12n1\lim_{n \to \infty} \frac{1}{2 n - 1} =
limn(1n(21n))\lim_{n \to \infty}\left(\frac{1}{n \left(2 - \frac{1}{n}\right)}\right)
Do Replacement
u=1nu = \frac{1}{n}
then
limn(1n(21n))=limu0+(u2u)\lim_{n \to \infty}\left(\frac{1}{n \left(2 - \frac{1}{n}\right)}\right) = \lim_{u \to 0^+}\left(\frac{u}{2 - u}\right)
=
020=0\frac{0}{2 - 0} = 0

The final answer:
limn12n1=0\lim_{n \to \infty} \frac{1}{2 n - 1} = 0
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010200-100
Rapid solution [src]
0
00
Other limits n→0, -oo, +oo, 1
limn12n1=0\lim_{n \to \infty} \frac{1}{2 n - 1} = 0
limn012n1=1\lim_{n \to 0^-} \frac{1}{2 n - 1} = -1
More at n→0 from the left
limn0+12n1=1\lim_{n \to 0^+} \frac{1}{2 n - 1} = -1
More at n→0 from the right
limn112n1=1\lim_{n \to 1^-} \frac{1}{2 n - 1} = 1
More at n→1 from the left
limn1+12n1=1\lim_{n \to 1^+} \frac{1}{2 n - 1} = 1
More at n→1 from the right
limn12n1=0\lim_{n \to -\infty} \frac{1}{2 n - 1} = 0
More at n→-oo
The graph
Limit of the function 1/(-1+2*n)