Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-1+e^(3*x))/x
Limit of (-1+e^x)/sin(x)
Limit of 2*x*sin(5*x)/5
Limit of -2+e^x-e^(-x)-sin(x)
Integral of d{x}
:
exp(2*x)
Graphing y =
:
exp(2*x)
Derivative of
:
exp(2*x)
Identical expressions
exp(two *x)
exponent of (2 multiply by x)
exponent of (two multiply by x)
exp(2x)
exp2x
Limit of the function
/
exp(2*x)
Limit of the function exp(2*x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
2*x lim e x->oo
lim
x
→
∞
e
2
x
\lim_{x \to \infty} e^{2 x}
x
→
∞
lim
e
2
x
Limit(exp(2*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
500000000
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
e
2
x
=
∞
\lim_{x \to \infty} e^{2 x} = \infty
x
→
∞
lim
e
2
x
=
∞
lim
x
→
0
−
e
2
x
=
1
\lim_{x \to 0^-} e^{2 x} = 1
x
→
0
−
lim
e
2
x
=
1
More at x→0 from the left
lim
x
→
0
+
e
2
x
=
1
\lim_{x \to 0^+} e^{2 x} = 1
x
→
0
+
lim
e
2
x
=
1
More at x→0 from the right
lim
x
→
1
−
e
2
x
=
e
2
\lim_{x \to 1^-} e^{2 x} = e^{2}
x
→
1
−
lim
e
2
x
=
e
2
More at x→1 from the left
lim
x
→
1
+
e
2
x
=
e
2
\lim_{x \to 1^+} e^{2 x} = e^{2}
x
→
1
+
lim
e
2
x
=
e
2
More at x→1 from the right
lim
x
→
−
∞
e
2
x
=
0
\lim_{x \to -\infty} e^{2 x} = 0
x
→
−
∞
lim
e
2
x
=
0
More at x→-oo
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
The graph