Mister Exam

Other calculators:


7*tan(9*x/5)/x

Limit of the function 7*tan(9*x/5)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     /9*x\\
     |7*tan|---||
     |     \ 5 /|
 lim |----------|
x->0+\    x     /
$$\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)$$
Limit((7*tan((9*x)/5))/x, x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)$$
transform
True

=
$$\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right) \lim_{x \to 0^+} \frac{1}{\cos{\left(\frac{9 x}{5} \right)}} = \lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)$$
Do replacement
$$u = \frac{9 x}{5}$$
then
$$\lim_{x \to 0^+}\left(\frac{7 \sin{\left(\frac{9 x}{5} \right)}}{x}\right) = \lim_{u \to 0^+}\left(\frac{63 \sin{\left(u \right)}}{5 u}\right)$$
=
$$\frac{63 \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)}{5}$$
The limit
$$\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)$$
is first remarkable limit, is equal to 1.

The final answer:
$$\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right) = \frac{63}{5}$$
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \tan{\left(\frac{9 x}{5} \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(\frac{x}{7}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \tan{\left(\frac{9 x}{5} \right)}}{\frac{d}{d x} \frac{x}{7}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{63 \tan^{2}{\left(\frac{9 x}{5} \right)}}{5} + \frac{63}{5}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{63 \tan^{2}{\left(\frac{9 x}{5} \right)}}{5} + \frac{63}{5}\right)$$
=
$$\frac{63}{5}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     /     /9*x\\
     |7*tan|---||
     |     \ 5 /|
 lim |----------|
x->0+\    x     /
$$\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)$$
63/5
$$\frac{63}{5}$$
= 12.6
     /     /9*x\\
     |7*tan|---||
     |     \ 5 /|
 lim |----------|
x->0-\    x     /
$$\lim_{x \to 0^-}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)$$
63/5
$$\frac{63}{5}$$
= 12.6
= 12.6
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right) = \frac{63}{5}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right) = \frac{63}{5}$$
$$\lim_{x \to \infty}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right) = 7 \tan{\left(\frac{9}{5} \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right) = 7 \tan{\left(\frac{9}{5} \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)$$
More at x→-oo
Rapid solution [src]
63/5
$$\frac{63}{5}$$
Numerical answer [src]
12.6
12.6
The graph
Limit of the function 7*tan(9*x/5)/x