Mister Exam

Other calculators:


7*tan(9*x/5)/x

Limit of the function 7*tan(9*x/5)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     /9*x\\
     |7*tan|---||
     |     \ 5 /|
 lim |----------|
x->0+\    x     /
limx0+(7tan(9x5)x)\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)
Limit((7*tan((9*x)/5))/x, x, 0)
Detail solution
Let's take the limit
limx0+(7tan(9x5)x)\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)
transform
True

=
limx0+(7tan(9x5)x)limx0+1cos(9x5)=limx0+(7tan(9x5)x)\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right) \lim_{x \to 0^+} \frac{1}{\cos{\left(\frac{9 x}{5} \right)}} = \lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)
Do replacement
u=9x5u = \frac{9 x}{5}
then
limx0+(7sin(9x5)x)=limu0+(63sin(u)5u)\lim_{x \to 0^+}\left(\frac{7 \sin{\left(\frac{9 x}{5} \right)}}{x}\right) = \lim_{u \to 0^+}\left(\frac{63 \sin{\left(u \right)}}{5 u}\right)
=
63limu0+(sin(u)u)5\frac{63 \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)}{5}
The limit
limu0+(sin(u)u)\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)
is first remarkable limit, is equal to 1.

The final answer:
limx0+(7tan(9x5)x)=635\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right) = \frac{63}{5}
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+tan(9x5)=0\lim_{x \to 0^+} \tan{\left(\frac{9 x}{5} \right)} = 0
and limit for the denominator is
limx0+(x7)=0\lim_{x \to 0^+}\left(\frac{x}{7}\right) = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(7tan(9x5)x)\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)
=
Let's transform the function under the limit a few
limx0+(7tan(9x5)x)\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)
=
limx0+(ddxtan(9x5)ddxx7)\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \tan{\left(\frac{9 x}{5} \right)}}{\frac{d}{d x} \frac{x}{7}}\right)
=
limx0+(63tan2(9x5)5+635)\lim_{x \to 0^+}\left(\frac{63 \tan^{2}{\left(\frac{9 x}{5} \right)}}{5} + \frac{63}{5}\right)
=
limx0+(63tan2(9x5)5+635)\lim_{x \to 0^+}\left(\frac{63 \tan^{2}{\left(\frac{9 x}{5} \right)}}{5} + \frac{63}{5}\right)
=
635\frac{63}{5}
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-250250
One‐sided limits [src]
     /     /9*x\\
     |7*tan|---||
     |     \ 5 /|
 lim |----------|
x->0+\    x     /
limx0+(7tan(9x5)x)\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)
63/5
635\frac{63}{5}
= 12.6
     /     /9*x\\
     |7*tan|---||
     |     \ 5 /|
 lim |----------|
x->0-\    x     /
limx0(7tan(9x5)x)\lim_{x \to 0^-}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)
63/5
635\frac{63}{5}
= 12.6
= 12.6
Other limits x→0, -oo, +oo, 1
limx0(7tan(9x5)x)=635\lim_{x \to 0^-}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right) = \frac{63}{5}
More at x→0 from the left
limx0+(7tan(9x5)x)=635\lim_{x \to 0^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right) = \frac{63}{5}
limx(7tan(9x5)x)\lim_{x \to \infty}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)
More at x→oo
limx1(7tan(9x5)x)=7tan(95)\lim_{x \to 1^-}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right) = 7 \tan{\left(\frac{9}{5} \right)}
More at x→1 from the left
limx1+(7tan(9x5)x)=7tan(95)\lim_{x \to 1^+}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right) = 7 \tan{\left(\frac{9}{5} \right)}
More at x→1 from the right
limx(7tan(9x5)x)\lim_{x \to -\infty}\left(\frac{7 \tan{\left(\frac{9 x}{5} \right)}}{x}\right)
More at x→-oo
Rapid solution [src]
63/5
635\frac{63}{5}
Numerical answer [src]
12.6
12.6
The graph
Limit of the function 7*tan(9*x/5)/x