We have indeterminateness of type
oo/oo,
i.e. limit for the numerator is
$$\lim_{x \to \infty} x^{3} = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty} e^{x} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(e^{- x} x^{3}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to \infty}\left(x^{3} e^{- x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} x^{3}}{\frac{d}{d x} e^{x}}\right)$$
=
$$\lim_{x \to \infty}\left(3 x^{2} e^{- x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} 3 x^{2}}{\frac{d}{d x} e^{x}}\right)$$
=
$$\lim_{x \to \infty}\left(6 x e^{- x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} 6 x}{\frac{d}{d x} e^{x}}\right)$$
=
$$\lim_{x \to \infty}\left(6 e^{- x}\right)$$
=
$$\lim_{x \to \infty}\left(6 e^{- x}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)