Mister Exam

Other calculators:


e^(-x)*x^3

Limit of the function e^(-x)*x^3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / -x  3\
 lim \E  *x /
x->oo        
$$\lim_{x \to \infty}\left(e^{- x} x^{3}\right)$$
Limit(E^(-x)*x^3, x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to \infty} x^{3} = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty} e^{x} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(e^{- x} x^{3}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to \infty}\left(x^{3} e^{- x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} x^{3}}{\frac{d}{d x} e^{x}}\right)$$
=
$$\lim_{x \to \infty}\left(3 x^{2} e^{- x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} 3 x^{2}}{\frac{d}{d x} e^{x}}\right)$$
=
$$\lim_{x \to \infty}\left(6 x e^{- x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} 6 x}{\frac{d}{d x} e^{x}}\right)$$
=
$$\lim_{x \to \infty}\left(6 e^{- x}\right)$$
=
$$\lim_{x \to \infty}\left(6 e^{- x}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(e^{- x} x^{3}\right) = 0$$
$$\lim_{x \to 0^-}\left(e^{- x} x^{3}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(e^{- x} x^{3}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(e^{- x} x^{3}\right) = e^{-1}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(e^{- x} x^{3}\right) = e^{-1}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(e^{- x} x^{3}\right) = -\infty$$
More at x→-oo
Rapid solution [src]
0
$$0$$
The graph
Limit of the function e^(-x)*x^3