Mister Exam

Other calculators


e^(-x)*x^3

Integral of e^(-x)*x^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo          
  /          
 |           
 |   -x  3   
 |  e  *x  dx
 |           
/            
0            
0x3exdx\int\limits_{0}^{\infty} x^{3} e^{- x}\, dx
Integral(x^3/E^x, (x, 0, oo))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=x3u{\left(x \right)} = x^{3} and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{- x}.

    Then du(x)=3x2\operatorname{du}{\left(x \right)} = 3 x^{2}.

    To find v(x)v{\left(x \right)}:

    1. There are multiple ways to do this integral.

      Method #1

      1. Let u=xu = - x.

        Then let du=dxdu = - dx and substitute du- du:

        eudu\int e^{u}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (eu)du=eudu\int \left(- e^{u}\right)\, du = - \int e^{u}\, du

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu- e^{u}

        Now substitute uu back in:

        ex- e^{- x}

      Method #2

      1. Let u=exu = e^{- x}.

        Then let du=exdxdu = - e^{- x} dx and substitute du- du:

        1du\int 1\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (1)du=1du\int \left(-1\right)\, du = - \int 1\, du

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          So, the result is: u- u

        Now substitute uu back in:

        ex- e^{- x}

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=3x2u{\left(x \right)} = - 3 x^{2} and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{- x}.

    Then du(x)=6x\operatorname{du}{\left(x \right)} = - 6 x.

    To find v(x)v{\left(x \right)}:

    1. Let u=xu = - x.

      Then let du=dxdu = - dx and substitute du- du:

      eudu\int e^{u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (eu)du=eudu\int \left(- e^{u}\right)\, du = - \int e^{u}\, du

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu- e^{u}

      Now substitute uu back in:

      ex- e^{- x}

    Now evaluate the sub-integral.

  3. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=6xu{\left(x \right)} = 6 x and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{- x}.

    Then du(x)=6\operatorname{du}{\left(x \right)} = 6.

    To find v(x)v{\left(x \right)}:

    1. Let u=xu = - x.

      Then let du=dxdu = - dx and substitute du- du:

      eudu\int e^{u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (eu)du=eudu\int \left(- e^{u}\right)\, du = - \int e^{u}\, du

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu- e^{u}

      Now substitute uu back in:

      ex- e^{- x}

    Now evaluate the sub-integral.

  4. The integral of a constant times a function is the constant times the integral of the function:

    (6ex)dx=6exdx\int \left(- 6 e^{- x}\right)\, dx = - 6 \int e^{- x}\, dx

    1. Let u=xu = - x.

      Then let du=dxdu = - dx and substitute du- du:

      eudu\int e^{u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (eu)du=eudu\int \left(- e^{u}\right)\, du = - \int e^{u}\, du

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu- e^{u}

      Now substitute uu back in:

      ex- e^{- x}

    So, the result is: 6ex6 e^{- x}

  5. Now simplify:

    (x33x26x6)ex\left(- x^{3} - 3 x^{2} - 6 x - 6\right) e^{- x}

  6. Add the constant of integration:

    (x33x26x6)ex+constant\left(- x^{3} - 3 x^{2} - 6 x - 6\right) e^{- x}+ \mathrm{constant}


The answer is:

(x33x26x6)ex+constant\left(- x^{3} - 3 x^{2} - 6 x - 6\right) e^{- x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                   
 |                                                    
 |  -x  3             -x    3  -x        -x      2  -x
 | e  *x  dx = C - 6*e   - x *e   - 6*x*e   - 3*x *e  
 |                                                    
/                                                     
x3exdx=Cx3ex3x2ex6xex6ex\int x^{3} e^{- x}\, dx = C - x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 e^{- x}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-10
The answer [src]
6
66
=
=
6
66
The graph
Integral of e^(-x)*x^3 dx

    Use the examples entering the upper and lower limits of integration.