Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 7^(1/(-3+x))
Limit of (3-3*x^2+4*x^4+6*x^3)/(2*x^2+7*x^4)
Limit of ((5+4*x)/(-1+5*x))^(1+3*x)
Limit of (-6-x^2-3*x+4*x^3)/(3-x^2+2*x^3)
Graphing y =
:
e^(-n)
Integral of d{x}
:
e^(-n)
Sum of series
:
e^(-n)
Identical expressions
e^(-n)
e to the power of ( minus n)
e(-n)
e-n
e^-n
Similar expressions
cos(e^(-n)+1/n)
e^(n)
Limit of the function
/
e^(-n)
Limit of the function e^(-n)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
-n lim E n->oo
$$\lim_{n \to \infty} e^{- n}$$
Limit(E^(-n), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} e^{- n} = 0$$
$$\lim_{n \to 0^-} e^{- n} = 1$$
More at n→0 from the left
$$\lim_{n \to 0^+} e^{- n} = 1$$
More at n→0 from the right
$$\lim_{n \to 1^-} e^{- n} = e^{-1}$$
More at n→1 from the left
$$\lim_{n \to 1^+} e^{- n} = e^{-1}$$
More at n→1 from the right
$$\lim_{n \to -\infty} e^{- n} = \infty$$
More at n→-oo
Rapid solution
[src]
0
$$0$$
Expand and simplify
The graph