Mister Exam

Other calculators:


e^(-n)

Limit of the function e^(-n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      -n
 lim E  
n->oo   
$$\lim_{n \to \infty} e^{- n}$$
Limit(E^(-n), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} e^{- n} = 0$$
$$\lim_{n \to 0^-} e^{- n} = 1$$
More at n→0 from the left
$$\lim_{n \to 0^+} e^{- n} = 1$$
More at n→0 from the right
$$\lim_{n \to 1^-} e^{- n} = e^{-1}$$
More at n→1 from the left
$$\lim_{n \to 1^+} e^{- n} = e^{-1}$$
More at n→1 from the right
$$\lim_{n \to -\infty} e^{- n} = \infty$$
More at n→-oo
Rapid solution [src]
0
$$0$$
The graph
Limit of the function e^(-n)