Mister Exam

Other calculators:


((1+x)^3-(-1+x)^3)/(1+x^2)

Limit of the function ((1+x)^3-(-1+x)^3)/(1+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       3           3\
     |(1 + x)  - (-1 + x) |
 lim |--------------------|
x->oo|            2       |
     \       1 + x        /
$$\lim_{x \to \infty}\left(\frac{- \left(x - 1\right)^{3} + \left(x + 1\right)^{3}}{x^{2} + 1}\right)$$
Limit(((1 + x)^3 - (-1 + x)^3)/(1 + x^2), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{- \left(x - 1\right)^{3} + \left(x + 1\right)^{3}}{x^{2} + 1}\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(\frac{- \left(x - 1\right)^{3} + \left(x + 1\right)^{3}}{x^{2} + 1}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{6 + \frac{2}{x^{2}}}{1 + \frac{1}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{6 + \frac{2}{x^{2}}}{1 + \frac{1}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{2 u^{2} + 6}{u^{2} + 1}\right)$$
=
$$\frac{2 \cdot 0^{2} + 6}{0^{2} + 1} = 6$$

The final answer:
$$\lim_{x \to \infty}\left(\frac{- \left(x - 1\right)^{3} + \left(x + 1\right)^{3}}{x^{2} + 1}\right) = 6$$
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to \infty}\left(6 x^{2} + 2\right) = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty}\left(x^{2} + 1\right) = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{- \left(x - 1\right)^{3} + \left(x + 1\right)^{3}}{x^{2} + 1}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(6 x^{2} + 2\right)}{\frac{d}{d x} \left(x^{2} + 1\right)}\right)$$
=
$$\lim_{x \to \infty} 6$$
=
$$\lim_{x \to \infty} 6$$
=
$$6$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
6
$$6$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{- \left(x - 1\right)^{3} + \left(x + 1\right)^{3}}{x^{2} + 1}\right) = 6$$
$$\lim_{x \to 0^-}\left(\frac{- \left(x - 1\right)^{3} + \left(x + 1\right)^{3}}{x^{2} + 1}\right) = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{- \left(x - 1\right)^{3} + \left(x + 1\right)^{3}}{x^{2} + 1}\right) = 2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{- \left(x - 1\right)^{3} + \left(x + 1\right)^{3}}{x^{2} + 1}\right) = 4$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{- \left(x - 1\right)^{3} + \left(x + 1\right)^{3}}{x^{2} + 1}\right) = 4$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{- \left(x - 1\right)^{3} + \left(x + 1\right)^{3}}{x^{2} + 1}\right) = 6$$
More at x→-oo
The graph
Limit of the function ((1+x)^3-(-1+x)^3)/(1+x^2)