Mister Exam

Other calculators


e^(-n)

Integral of e^(-n) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1       
  /       
 |        
 |   -n   
 |  e   dn
 |        
/         
0         
$$\int\limits_{0}^{1} e^{- n}\, dn$$
Integral(E^(-n), (n, 0, 1))
The answer (Indefinite) [src]
  /                
 |                 
 |  -n           -n
 | e   dn = C - e  
 |                 
/                  
$$\int e^{- n}\, dn = C - e^{- n}$$
The graph
The answer [src]
     -1
1 - e  
$$1 - e^{-1}$$
=
=
     -1
1 - e  
$$1 - e^{-1}$$
Numerical answer [src]
0.632120558828558
0.632120558828558
The graph
Integral of e^(-n) dx

    Use the examples entering the upper and lower limits of integration.