We have indeterminateness of type
0/0, i.e. limit for the numerator is
lim x → 0 + log ( x + e x ) = 0 \lim_{x \to 0^+} \log{\left(x + e^{x} \right)} = 0 x → 0 + lim log ( x + e x ) = 0 and limit for the denominator is
lim x → 0 + 1 cot ( x ) = 0 \lim_{x \to 0^+} \frac{1}{\cot{\left(x \right)}} = 0 x → 0 + lim cot ( x ) 1 = 0 Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
lim x → 0 + ( log ( e x + x ) cot ( x ) ) \lim_{x \to 0^+}\left(\log{\left(e^{x} + x \right)} \cot{\left(x \right)}\right) x → 0 + lim ( log ( e x + x ) cot ( x ) ) =
Let's transform the function under the limit a few
lim x → 0 + ( log ( x + e x ) cot ( x ) ) \lim_{x \to 0^+}\left(\log{\left(x + e^{x} \right)} \cot{\left(x \right)}\right) x → 0 + lim ( log ( x + e x ) cot ( x ) ) =
lim x → 0 + ( d d x log ( x + e x ) d d x 1 cot ( x ) ) \lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \log{\left(x + e^{x} \right)}}{\frac{d}{d x} \frac{1}{\cot{\left(x \right)}}}\right) x → 0 + lim ( d x d c o t ( x ) 1 d x d log ( x + e x ) ) =
lim x → 0 + ( ( e x + 1 ) cot 2 ( x ) ( x + e x ) ( cot 2 ( x ) + 1 ) ) \lim_{x \to 0^+}\left(\frac{\left(e^{x} + 1\right) \cot^{2}{\left(x \right)}}{\left(x + e^{x}\right) \left(\cot^{2}{\left(x \right)} + 1\right)}\right) x → 0 + lim ( ( x + e x ) ( cot 2 ( x ) + 1 ) ( e x + 1 ) cot 2 ( x ) ) =
lim x → 0 + ( 2 cot 2 ( x ) cot 2 ( x ) + 1 ) \lim_{x \to 0^+}\left(\frac{2 \cot^{2}{\left(x \right)}}{\cot^{2}{\left(x \right)} + 1}\right) x → 0 + lim ( cot 2 ( x ) + 1 2 cot 2 ( x ) ) =
lim x → 0 + ( d d x 1 cot 2 ( x ) + 1 d d x 1 2 cot 2 ( x ) ) \lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \frac{1}{\cot^{2}{\left(x \right)} + 1}}{\frac{d}{d x} \frac{1}{2 \cot^{2}{\left(x \right)}}}\right) x → 0 + lim ( d x d 2 c o t 2 ( x ) 1 d x d c o t 2 ( x ) + 1 1 ) =
lim x → 0 + ( 1 ( 2 cot 2 ( x ) + 2 ) ( − cot 4 ( x ) − 4 cot 6 ( x ) − 4 cot 4 ( x ) − 2 cot 2 ( x ) − 4 cot 6 ( x ) − 4 cot 4 ( x ) − 1 − 4 cot 6 ( x ) − 4 cot 4 ( x ) ) ) \lim_{x \to 0^+}\left(\frac{1}{\left(2 \cot^{2}{\left(x \right)} + 2\right) \left(- \frac{\cot^{4}{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}} - \frac{2 \cot^{2}{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}} - \frac{1}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}}\right)}\right) x → 0 + lim ( 2 cot 2 ( x ) + 2 ) ( − − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) c o t 4 ( x ) − − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) 2 c o t 2 ( x ) − − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) 1 ) 1 =
lim x → 0 + ( d d x 1 2 cot 2 ( x ) + 2 d d x ( − cot 4 ( x ) − 4 cot 6 ( x ) − 4 cot 4 ( x ) − 2 cot 2 ( x ) − 4 cot 6 ( x ) − 4 cot 4 ( x ) − 1 − 4 cot 6 ( x ) − 4 cot 4 ( x ) ) ) \lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \frac{1}{2 \cot^{2}{\left(x \right)} + 2}}{\frac{d}{d x} \left(- \frac{\cot^{4}{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}} - \frac{2 \cot^{2}{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}} - \frac{1}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}}\right)}\right) x → 0 + lim d x d ( − − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) c o t 4 ( x ) − − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) 2 c o t 2 ( x ) − − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) 1 ) d x d 2 c o t 2 ( x ) + 2 1 =
lim x → 0 + ( − 2 ( − 2 cot 2 ( x ) − 2 ) cot ( x ) ( 2 cot 2 ( x ) + 2 ) 2 ( − ( 4 ( − 6 cot 2 ( x ) − 6 ) cot 5 ( x ) + 4 ( − 4 cot 2 ( x ) − 4 ) cot 3 ( x ) ) cot 4 ( x ) ( − 4 cot 6 ( x ) − 4 cot 4 ( x ) ) 2 − 2 ( 4 ( − 6 cot 2 ( x ) − 6 ) cot 5 ( x ) + 4 ( − 4 cot 2 ( x ) − 4 ) cot 3 ( x ) ) cot 2 ( x ) ( − 4 cot 6 ( x ) − 4 cot 4 ( x ) ) 2 − 4 ( − 6 cot 2 ( x ) − 6 ) cot 5 ( x ) + 4 ( − 4 cot 2 ( x ) − 4 ) cot 3 ( x ) ( − 4 cot 6 ( x ) − 4 cot 4 ( x ) ) 2 − ( − 4 cot 2 ( x ) − 4 ) cot 3 ( x ) − 4 cot 6 ( x ) − 4 cot 4 ( x ) − 2 ( − 2 cot 2 ( x ) − 2 ) cot ( x ) − 4 cot 6 ( x ) − 4 cot 4 ( x ) ) ) \lim_{x \to 0^+}\left(- \frac{2 \left(- 2 \cot^{2}{\left(x \right)} - 2\right) \cot{\left(x \right)}}{\left(2 \cot^{2}{\left(x \right)} + 2\right)^{2} \left(- \frac{\left(4 \left(- 6 \cot^{2}{\left(x \right)} - 6\right) \cot^{5}{\left(x \right)} + 4 \left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}\right) \cot^{4}{\left(x \right)}}{\left(- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}\right)^{2}} - \frac{2 \left(4 \left(- 6 \cot^{2}{\left(x \right)} - 6\right) \cot^{5}{\left(x \right)} + 4 \left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}\right) \cot^{2}{\left(x \right)}}{\left(- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}\right)^{2}} - \frac{4 \left(- 6 \cot^{2}{\left(x \right)} - 6\right) \cot^{5}{\left(x \right)} + 4 \left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}}{\left(- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}\right)^{2}} - \frac{\left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}} - \frac{2 \left(- 2 \cot^{2}{\left(x \right)} - 2\right) \cot{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}}\right)}\right) x → 0 + lim − ( 2 cot 2 ( x ) + 2 ) 2 ( − ( − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) ) 2 ( 4 ( − 6 c o t 2 ( x ) − 6 ) c o t 5 ( x ) + 4 ( − 4 c o t 2 ( x ) − 4 ) c o t 3 ( x ) ) c o t 4 ( x ) − ( − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) ) 2 2 ( 4 ( − 6 c o t 2 ( x ) − 6 ) c o t 5 ( x ) + 4 ( − 4 c o t 2 ( x ) − 4 ) c o t 3 ( x ) ) c o t 2 ( x ) − ( − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) ) 2 4 ( − 6 c o t 2 ( x ) − 6 ) c o t 5 ( x ) + 4 ( − 4 c o t 2 ( x ) − 4 ) c o t 3 ( x ) − − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) ( − 4 c o t 2 ( x ) − 4 ) c o t 3 ( x ) − − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) 2 ( − 2 c o t 2 ( x ) − 2 ) c o t ( x ) ) 2 ( − 2 cot 2 ( x ) − 2 ) cot ( x ) =
lim x → 0 + ( − 2 ( − 2 cot 2 ( x ) − 2 ) cot ( x ) ( 2 cot 2 ( x ) + 2 ) 2 ( − ( 4 ( − 6 cot 2 ( x ) − 6 ) cot 5 ( x ) + 4 ( − 4 cot 2 ( x ) − 4 ) cot 3 ( x ) ) cot 4 ( x ) ( − 4 cot 6 ( x ) − 4 cot 4 ( x ) ) 2 − 2 ( 4 ( − 6 cot 2 ( x ) − 6 ) cot 5 ( x ) + 4 ( − 4 cot 2 ( x ) − 4 ) cot 3 ( x ) ) cot 2 ( x ) ( − 4 cot 6 ( x ) − 4 cot 4 ( x ) ) 2 − 4 ( − 6 cot 2 ( x ) − 6 ) cot 5 ( x ) + 4 ( − 4 cot 2 ( x ) − 4 ) cot 3 ( x ) ( − 4 cot 6 ( x ) − 4 cot 4 ( x ) ) 2 − ( − 4 cot 2 ( x ) − 4 ) cot 3 ( x ) − 4 cot 6 ( x ) − 4 cot 4 ( x ) − 2 ( − 2 cot 2 ( x ) − 2 ) cot ( x ) − 4 cot 6 ( x ) − 4 cot 4 ( x ) ) ) \lim_{x \to 0^+}\left(- \frac{2 \left(- 2 \cot^{2}{\left(x \right)} - 2\right) \cot{\left(x \right)}}{\left(2 \cot^{2}{\left(x \right)} + 2\right)^{2} \left(- \frac{\left(4 \left(- 6 \cot^{2}{\left(x \right)} - 6\right) \cot^{5}{\left(x \right)} + 4 \left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}\right) \cot^{4}{\left(x \right)}}{\left(- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}\right)^{2}} - \frac{2 \left(4 \left(- 6 \cot^{2}{\left(x \right)} - 6\right) \cot^{5}{\left(x \right)} + 4 \left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}\right) \cot^{2}{\left(x \right)}}{\left(- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}\right)^{2}} - \frac{4 \left(- 6 \cot^{2}{\left(x \right)} - 6\right) \cot^{5}{\left(x \right)} + 4 \left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}}{\left(- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}\right)^{2}} - \frac{\left(- 4 \cot^{2}{\left(x \right)} - 4\right) \cot^{3}{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}} - \frac{2 \left(- 2 \cot^{2}{\left(x \right)} - 2\right) \cot{\left(x \right)}}{- 4 \cot^{6}{\left(x \right)} - 4 \cot^{4}{\left(x \right)}}\right)}\right) x → 0 + lim − ( 2 cot 2 ( x ) + 2 ) 2 ( − ( − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) ) 2 ( 4 ( − 6 c o t 2 ( x ) − 6 ) c o t 5 ( x ) + 4 ( − 4 c o t 2 ( x ) − 4 ) c o t 3 ( x ) ) c o t 4 ( x ) − ( − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) ) 2 2 ( 4 ( − 6 c o t 2 ( x ) − 6 ) c o t 5 ( x ) + 4 ( − 4 c o t 2 ( x ) − 4 ) c o t 3 ( x ) ) c o t 2 ( x ) − ( − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) ) 2 4 ( − 6 c o t 2 ( x ) − 6 ) c o t 5 ( x ) + 4 ( − 4 c o t 2 ( x ) − 4 ) c o t 3 ( x ) − − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) ( − 4 c o t 2 ( x ) − 4 ) c o t 3 ( x ) − − 4 c o t 6 ( x ) − 4 c o t 4 ( x ) 2 ( − 2 c o t 2 ( x ) − 2 ) c o t ( x ) ) 2 ( − 2 cot 2 ( x ) − 2 ) cot ( x ) =
2 2 2 It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)