Mister Exam

Other calculators:


(cos(x)+sin(x))^(1/x)

Limit of the function (cos(x)+sin(x))^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x _________________
 lim \/ cos(x) + sin(x) 
x->0+                   
limx0+(sin(x)+cos(x))1x\lim_{x \to 0^+} \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{\frac{1}{x}}
Limit((cos(x) + sin(x))^(1/x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010025
One‐sided limits [src]
     x _________________
 lim \/ cos(x) + sin(x) 
x->0+                   
limx0+(sin(x)+cos(x))1x\lim_{x \to 0^+} \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{\frac{1}{x}}
E
ee
= 2.71828182845905
     x _________________
 lim \/ cos(x) + sin(x) 
x->0-                   
limx0(sin(x)+cos(x))1x\lim_{x \to 0^-} \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{\frac{1}{x}}
E
ee
= 2.71828182845905
= 2.71828182845905
Rapid solution [src]
E
ee
Numerical answer [src]
2.71828182845905
2.71828182845905
The graph
Limit of the function (cos(x)+sin(x))^(1/x)