Mister Exam

Other calculators:


sin(5*x)

Limit of the function sin(5*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim sin(5*x)
x->0+        
limx0+sin(5x)\lim_{x \to 0^+} \sin{\left(5 x \right)}
Limit(sin(5*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10102-2
Other limits x→0, -oo, +oo, 1
limx0sin(5x)=0\lim_{x \to 0^-} \sin{\left(5 x \right)} = 0
More at x→0 from the left
limx0+sin(5x)=0\lim_{x \to 0^+} \sin{\left(5 x \right)} = 0
limxsin(5x)=1,1\lim_{x \to \infty} \sin{\left(5 x \right)} = \left\langle -1, 1\right\rangle
More at x→oo
limx1sin(5x)=sin(5)\lim_{x \to 1^-} \sin{\left(5 x \right)} = \sin{\left(5 \right)}
More at x→1 from the left
limx1+sin(5x)=sin(5)\lim_{x \to 1^+} \sin{\left(5 x \right)} = \sin{\left(5 \right)}
More at x→1 from the right
limxsin(5x)=1,1\lim_{x \to -\infty} \sin{\left(5 x \right)} = \left\langle -1, 1\right\rangle
More at x→-oo
One‐sided limits [src]
 lim sin(5*x)
x->0+        
limx0+sin(5x)\lim_{x \to 0^+} \sin{\left(5 x \right)}
0
00
= -1.57784879884055e-29
 lim sin(5*x)
x->0-        
limx0sin(5x)\lim_{x \to 0^-} \sin{\left(5 x \right)}
0
00
= 1.57784879884055e-29
= 1.57784879884055e-29
Rapid solution [src]
0
00
Numerical answer [src]
-1.57784879884055e-29
-1.57784879884055e-29
The graph
Limit of the function sin(5*x)