We have indeterminateness of type
0/0, i.e. limit for the numerator is
lim x → 0 + 1 cot ( 8 x ) = 0 \lim_{x \to 0^+} \frac{1}{\cot{\left(8 x \right)}} = 0 x → 0 + lim cot ( 8 x ) 1 = 0 and limit for the denominator is
lim x → 0 + 1 cot ( 2 x ) = 0 \lim_{x \to 0^+} \frac{1}{\cot{\left(2 x \right)}} = 0 x → 0 + lim cot ( 2 x ) 1 = 0 Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
lim x → 0 + ( cot ( 2 x ) cot ( 8 x ) ) \lim_{x \to 0^+}\left(\frac{\cot{\left(2 x \right)}}{\cot{\left(8 x \right)}}\right) x → 0 + lim ( cot ( 8 x ) cot ( 2 x ) ) =
lim x → 0 + ( d d x 1 cot ( 8 x ) d d x 1 cot ( 2 x ) ) \lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \frac{1}{\cot{\left(8 x \right)}}}{\frac{d}{d x} \frac{1}{\cot{\left(2 x \right)}}}\right) x → 0 + lim ( d x d c o t ( 2 x ) 1 d x d c o t ( 8 x ) 1 ) =
lim x → 0 + ( 8 cot 2 ( 2 x ) cot 2 ( 8 x ) + 8 cot 2 ( 2 x ) ( 2 cot 2 ( 2 x ) + 2 ) cot 2 ( 8 x ) ) \lim_{x \to 0^+}\left(\frac{8 \cot^{2}{\left(2 x \right)} \cot^{2}{\left(8 x \right)} + 8 \cot^{2}{\left(2 x \right)}}{\left(2 \cot^{2}{\left(2 x \right)} + 2\right) \cot^{2}{\left(8 x \right)}}\right) x → 0 + lim ( ( 2 cot 2 ( 2 x ) + 2 ) cot 2 ( 8 x ) 8 cot 2 ( 2 x ) cot 2 ( 8 x ) + 8 cot 2 ( 2 x ) ) =
lim x → 0 + ( d d x 1 2 cot 2 ( 2 x ) + 2 d d x cot 2 ( 8 x ) 8 cot 2 ( 2 x ) cot 2 ( 8 x ) + 8 cot 2 ( 2 x ) ) \lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \frac{1}{2 \cot^{2}{\left(2 x \right)} + 2}}{\frac{d}{d x} \frac{\cot^{2}{\left(8 x \right)}}{8 \cot^{2}{\left(2 x \right)} \cot^{2}{\left(8 x \right)} + 8 \cot^{2}{\left(2 x \right)}}}\right) x → 0 + lim d x d 8 c o t 2 ( 2 x ) c o t 2 ( 8 x ) + 8 c o t 2 ( 2 x ) c o t 2 ( 8 x ) d x d 2 c o t 2 ( 2 x ) + 2 1 =
lim x → 0 + ( − 2 ( − 4 cot 2 ( 2 x ) − 4 ) cot ( 2 x ) ( ( − 16 cot 2 ( 8 x ) − 16 ) cot ( 8 x ) 8 cot 2 ( 2 x ) cot 2 ( 8 x ) + 8 cot 2 ( 2 x ) + ( − 8 ( − 4 cot 2 ( 2 x ) − 4 ) cot ( 2 x ) cot 2 ( 8 x ) − 8 ( − 4 cot 2 ( 2 x ) − 4 ) cot ( 2 x ) − 8 ( − 16 cot 2 ( 8 x ) − 16 ) cot 2 ( 2 x ) cot ( 8 x ) ) cot 2 ( 8 x ) ( 8 cot 2 ( 2 x ) cot 2 ( 8 x ) + 8 cot 2 ( 2 x ) ) 2 ) ( 2 cot 2 ( 2 x ) + 2 ) 2 ) \lim_{x \to 0^+}\left(- \frac{2 \left(- 4 \cot^{2}{\left(2 x \right)} - 4\right) \cot{\left(2 x \right)}}{\left(\frac{\left(- 16 \cot^{2}{\left(8 x \right)} - 16\right) \cot{\left(8 x \right)}}{8 \cot^{2}{\left(2 x \right)} \cot^{2}{\left(8 x \right)} + 8 \cot^{2}{\left(2 x \right)}} + \frac{\left(- 8 \left(- 4 \cot^{2}{\left(2 x \right)} - 4\right) \cot{\left(2 x \right)} \cot^{2}{\left(8 x \right)} - 8 \left(- 4 \cot^{2}{\left(2 x \right)} - 4\right) \cot{\left(2 x \right)} - 8 \left(- 16 \cot^{2}{\left(8 x \right)} - 16\right) \cot^{2}{\left(2 x \right)} \cot{\left(8 x \right)}\right) \cot^{2}{\left(8 x \right)}}{\left(8 \cot^{2}{\left(2 x \right)} \cot^{2}{\left(8 x \right)} + 8 \cot^{2}{\left(2 x \right)}\right)^{2}}\right) \left(2 \cot^{2}{\left(2 x \right)} + 2\right)^{2}}\right) x → 0 + lim − ( 8 c o t 2 ( 2 x ) c o t 2 ( 8 x ) + 8 c o t 2 ( 2 x ) ( − 16 c o t 2 ( 8 x ) − 16 ) c o t ( 8 x ) + ( 8 c o t 2 ( 2 x ) c o t 2 ( 8 x ) + 8 c o t 2 ( 2 x ) ) 2 ( − 8 ( − 4 c o t 2 ( 2 x ) − 4 ) c o t ( 2 x ) c o t 2 ( 8 x ) − 8 ( − 4 c o t 2 ( 2 x ) − 4 ) c o t ( 2 x ) − 8 ( − 16 c o t 2 ( 8 x ) − 16 ) c o t 2 ( 2 x ) c o t ( 8 x ) ) c o t 2 ( 8 x ) ) ( 2 cot 2 ( 2 x ) + 2 ) 2 2 ( − 4 cot 2 ( 2 x ) − 4 ) cot ( 2 x ) =
lim x → 0 + ( − 2 ( − 4 cot 2 ( 2 x ) − 4 ) cot ( 2 x ) ( ( − 16 cot 2 ( 8 x ) − 16 ) cot ( 8 x ) 8 cot 2 ( 2 x ) cot 2 ( 8 x ) + 8 cot 2 ( 2 x ) + ( − 8 ( − 4 cot 2 ( 2 x ) − 4 ) cot ( 2 x ) cot 2 ( 8 x ) − 8 ( − 4 cot 2 ( 2 x ) − 4 ) cot ( 2 x ) − 8 ( − 16 cot 2 ( 8 x ) − 16 ) cot 2 ( 2 x ) cot ( 8 x ) ) cot 2 ( 8 x ) ( 8 cot 2 ( 2 x ) cot 2 ( 8 x ) + 8 cot 2 ( 2 x ) ) 2 ) ( 2 cot 2 ( 2 x ) + 2 ) 2 ) \lim_{x \to 0^+}\left(- \frac{2 \left(- 4 \cot^{2}{\left(2 x \right)} - 4\right) \cot{\left(2 x \right)}}{\left(\frac{\left(- 16 \cot^{2}{\left(8 x \right)} - 16\right) \cot{\left(8 x \right)}}{8 \cot^{2}{\left(2 x \right)} \cot^{2}{\left(8 x \right)} + 8 \cot^{2}{\left(2 x \right)}} + \frac{\left(- 8 \left(- 4 \cot^{2}{\left(2 x \right)} - 4\right) \cot{\left(2 x \right)} \cot^{2}{\left(8 x \right)} - 8 \left(- 4 \cot^{2}{\left(2 x \right)} - 4\right) \cot{\left(2 x \right)} - 8 \left(- 16 \cot^{2}{\left(8 x \right)} - 16\right) \cot^{2}{\left(2 x \right)} \cot{\left(8 x \right)}\right) \cot^{2}{\left(8 x \right)}}{\left(8 \cot^{2}{\left(2 x \right)} \cot^{2}{\left(8 x \right)} + 8 \cot^{2}{\left(2 x \right)}\right)^{2}}\right) \left(2 \cot^{2}{\left(2 x \right)} + 2\right)^{2}}\right) x → 0 + lim − ( 8 c o t 2 ( 2 x ) c o t 2 ( 8 x ) + 8 c o t 2 ( 2 x ) ( − 16 c o t 2 ( 8 x ) − 16 ) c o t ( 8 x ) + ( 8 c o t 2 ( 2 x ) c o t 2 ( 8 x ) + 8 c o t 2 ( 2 x ) ) 2 ( − 8 ( − 4 c o t 2 ( 2 x ) − 4 ) c o t ( 2 x ) c o t 2 ( 8 x ) − 8 ( − 4 c o t 2 ( 2 x ) − 4 ) c o t ( 2 x ) − 8 ( − 16 c o t 2 ( 8 x ) − 16 ) c o t 2 ( 2 x ) c o t ( 8 x ) ) c o t 2 ( 8 x ) ) ( 2 cot 2 ( 2 x ) + 2 ) 2 2 ( − 4 cot 2 ( 2 x ) − 4 ) cot ( 2 x ) =
4 4 4 It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)