Mister Exam

Other calculators:


cos(n)/n

Limit of the function cos(n)/n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /cos(n)\
 lim |------|
n->oo\  n   /
limn(cos(n)n)\lim_{n \to \infty}\left(\frac{\cos{\left(n \right)}}{n}\right)
Limit(cos(n)/n, n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2020
Other limits n→0, -oo, +oo, 1
limn(cos(n)n)=0\lim_{n \to \infty}\left(\frac{\cos{\left(n \right)}}{n}\right) = 0
limn0(cos(n)n)=\lim_{n \to 0^-}\left(\frac{\cos{\left(n \right)}}{n}\right) = -\infty
More at n→0 from the left
limn0+(cos(n)n)=\lim_{n \to 0^+}\left(\frac{\cos{\left(n \right)}}{n}\right) = \infty
More at n→0 from the right
limn1(cos(n)n)=cos(1)\lim_{n \to 1^-}\left(\frac{\cos{\left(n \right)}}{n}\right) = \cos{\left(1 \right)}
More at n→1 from the left
limn1+(cos(n)n)=cos(1)\lim_{n \to 1^+}\left(\frac{\cos{\left(n \right)}}{n}\right) = \cos{\left(1 \right)}
More at n→1 from the right
limn(cos(n)n)=0\lim_{n \to -\infty}\left(\frac{\cos{\left(n \right)}}{n}\right) = 0
More at n→-oo
Rapid solution [src]
0
00
The graph
Limit of the function cos(n)/n