Mister Exam

Other calculators:


(1-2*x)^(1/x)

Limit of the function (1-2*x)^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x _________
 lim \/ 1 - 2*x 
x->0+           
limx0+(12x)1x\lim_{x \to 0^+} \left(1 - 2 x\right)^{\frac{1}{x}}
Limit((1 - 2*x)^(1/x), x, 0)
Detail solution
Let's take the limit
limx0+(12x)1x\lim_{x \to 0^+} \left(1 - 2 x\right)^{\frac{1}{x}}
transform
do replacement
u=1(2)xu = \frac{1}{\left(-2\right) x}
then
limx0+(121x)1x\lim_{x \to 0^+} \left(1 - \frac{2}{\frac{1}{x}}\right)^{\frac{1}{x}} =
=
limu0+(1+1u)2u\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{- 2 u}
=
limu0+(1+1u)2u\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{- 2 u}
=
((limu0+(1+1u)u))2\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-2}
The limit
limu0+(1+1u)u\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}
is second remarkable limit, is equal to e ~ 2.718281828459045
then
((limu0+(1+1u)u))2=e2\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-2} = e^{-2}

The final answer:
limx0+(12x)1x=e2\lim_{x \to 0^+} \left(1 - 2 x\right)^{\frac{1}{x}} = e^{-2}
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100.01.0
Other limits x→0, -oo, +oo, 1
limx0(12x)1x=e2\lim_{x \to 0^-} \left(1 - 2 x\right)^{\frac{1}{x}} = e^{-2}
More at x→0 from the left
limx0+(12x)1x=e2\lim_{x \to 0^+} \left(1 - 2 x\right)^{\frac{1}{x}} = e^{-2}
limx(12x)1x=1\lim_{x \to \infty} \left(1 - 2 x\right)^{\frac{1}{x}} = 1
More at x→oo
limx1(12x)1x=1\lim_{x \to 1^-} \left(1 - 2 x\right)^{\frac{1}{x}} = -1
More at x→1 from the left
limx1+(12x)1x=1\lim_{x \to 1^+} \left(1 - 2 x\right)^{\frac{1}{x}} = -1
More at x→1 from the right
limx(12x)1x=1\lim_{x \to -\infty} \left(1 - 2 x\right)^{\frac{1}{x}} = 1
More at x→-oo
One‐sided limits [src]
     x _________
 lim \/ 1 - 2*x 
x->0+           
limx0+(12x)1x\lim_{x \to 0^+} \left(1 - 2 x\right)^{\frac{1}{x}}
 -2
e  
e2e^{-2}
= 0.135335283236613
     x _________
 lim \/ 1 - 2*x 
x->0-           
limx0(12x)1x\lim_{x \to 0^-} \left(1 - 2 x\right)^{\frac{1}{x}}
 -2
e  
e2e^{-2}
= 0.135335283236613
= 0.135335283236613
Rapid solution [src]
 -2
e  
e2e^{-2}
Numerical answer [src]
0.135335283236613
0.135335283236613
The graph
Limit of the function (1-2*x)^(1/x)