$$\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)}}{x!}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{\cos{\left(x \right)}}{x!}\right) = 1$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{x!}\right) = 1$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{\cos{\left(x \right)}}{x!}\right) = \cos{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{\cos{\left(x \right)}}{x!}\right) = \cos{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{\cos{\left(x \right)}}{x!}\right) = \frac{\left\langle -1, 1\right\rangle}{\left(-\infty\right)!}$$
More at x→-oo