Mister Exam

Other calculators:


cos(x)^2

Limit of the function cos(x)^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
           2   
  lim   cos (x)
   -pi         
x->----+       
    2          
$$\lim_{x \to \frac{\left(-1\right) \pi}{2}^+} \cos^{2}{\left(x \right)}$$
Limit(cos(x)^2, x, -pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
           2   
  lim   cos (x)
   -pi         
x->----+       
    2          
$$\lim_{x \to \frac{\left(-1\right) \pi}{2}^+} \cos^{2}{\left(x \right)}$$
0
$$0$$
= 1.88597981818432e-31
           2   
  lim   cos (x)
   -pi         
x->-----       
    2          
$$\lim_{x \to \frac{\left(-1\right) \pi}{2}^-} \cos^{2}{\left(x \right)}$$
0
$$0$$
= 1.88597981818432e-31
= 1.88597981818432e-31
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\left(-1\right) \pi}{2}^-} \cos^{2}{\left(x \right)} = 0$$
More at x→-pi/2 from the left
$$\lim_{x \to \frac{\left(-1\right) \pi}{2}^+} \cos^{2}{\left(x \right)} = 0$$
$$\lim_{x \to \infty} \cos^{2}{\left(x \right)} = \left\langle 0, 1\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-} \cos^{2}{\left(x \right)} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \cos^{2}{\left(x \right)} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \cos^{2}{\left(x \right)} = \cos^{2}{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \cos^{2}{\left(x \right)} = \cos^{2}{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \cos^{2}{\left(x \right)} = \left\langle 0, 1\right\rangle$$
More at x→-oo
Numerical answer [src]
1.88597981818432e-31
1.88597981818432e-31
The graph
Limit of the function cos(x)^2