Mister Exam

Other calculators:


cos(x)^(-2)

Limit of the function cos(x)^(-2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         1   
 lim  -------
   pi    2   
x->--+cos (x)
   2         
limxπ2+1cos2(x)\lim_{x \to \frac{\pi}{2}^+} \frac{1}{\cos^{2}{\left(x \right)}}
Limit(cos(x)^(-2), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.0025000
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limxπ21cos2(x)=\lim_{x \to \frac{\pi}{2}^-} \frac{1}{\cos^{2}{\left(x \right)}} = \infty
More at x→pi/2 from the left
limxπ2+1cos2(x)=\lim_{x \to \frac{\pi}{2}^+} \frac{1}{\cos^{2}{\left(x \right)}} = \infty
limx1cos2(x)=0,\lim_{x \to \infty} \frac{1}{\cos^{2}{\left(x \right)}} = \left\langle 0, \infty\right\rangle
More at x→oo
limx01cos2(x)=1\lim_{x \to 0^-} \frac{1}{\cos^{2}{\left(x \right)}} = 1
More at x→0 from the left
limx0+1cos2(x)=1\lim_{x \to 0^+} \frac{1}{\cos^{2}{\left(x \right)}} = 1
More at x→0 from the right
limx11cos2(x)=1cos2(1)\lim_{x \to 1^-} \frac{1}{\cos^{2}{\left(x \right)}} = \frac{1}{\cos^{2}{\left(1 \right)}}
More at x→1 from the left
limx1+1cos2(x)=1cos2(1)\lim_{x \to 1^+} \frac{1}{\cos^{2}{\left(x \right)}} = \frac{1}{\cos^{2}{\left(1 \right)}}
More at x→1 from the right
limx1cos2(x)=0,\lim_{x \to -\infty} \frac{1}{\cos^{2}{\left(x \right)}} = \left\langle 0, \infty\right\rangle
More at x→-oo
One‐sided limits [src]
         1   
 lim  -------
   pi    2   
x->--+cos (x)
   2         
limxπ2+1cos2(x)\lim_{x \to \frac{\pi}{2}^+} \frac{1}{\cos^{2}{\left(x \right)}}
oo
\infty
= 22801.3333362576
         1   
 lim  -------
   pi    2   
x->---cos (x)
   2         
limxπ21cos2(x)\lim_{x \to \frac{\pi}{2}^-} \frac{1}{\cos^{2}{\left(x \right)}}
oo
\infty
= 22801.3333362568
= 22801.3333362568
Numerical answer [src]
22801.3333362576
22801.3333362576
The graph
Limit of the function cos(x)^(-2)