Mister Exam

Other calculators


cos(x)^(-2)

Integral of cos(x)^(-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     1      
 |  ------- dx
 |     2      
 |  cos (x)   
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{1}{\cos^{2}{\left(x \right)}}\, dx$$
Integral(cos(x)^(-2), (x, 0, 1))
The answer (Indefinite) [src]
  /                       
 |                        
 |    1             sin(x)
 | ------- dx = C + ------
 |    2             cos(x)
 | cos (x)                
 |                        
/                         
$$\int \frac{1}{\cos^{2}{\left(x \right)}}\, dx = C + \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}$$
The graph
The answer [src]
sin(1)
------
cos(1)
$$\frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}}$$
=
=
sin(1)
------
cos(1)
$$\frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}}$$
sin(1)/cos(1)
Numerical answer [src]
1.5574077246549
1.5574077246549
The graph
Integral of cos(x)^(-2) dx

    Use the examples entering the upper and lower limits of integration.