Mister Exam

Autres calculateurs:


cos(7*x)

Limite d'une fonction cos(7*x)

lorsque
v

Pour les points finis:

Graphique:

de à

Fonction définie par morceaux:

Solution

You have entered [src]
 lim cos(7*x)
x->0+        
$$\lim_{x \to 0^+} \cos{\left(7 x \right)}$$
Limit(cos(7*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim cos(7*x)
x->0+        
$$\lim_{x \to 0^+} \cos{\left(7 x \right)}$$
1
$$1$$
= 1.0
 lim cos(7*x)
x->0-        
$$\lim_{x \to 0^-} \cos{\left(7 x \right)}$$
1
$$1$$
= 1.0
= 1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \cos{\left(7 x \right)} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \cos{\left(7 x \right)} = 1$$
$$\lim_{x \to \infty} \cos{\left(7 x \right)} = \left\langle -1, 1\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-} \cos{\left(7 x \right)} = \cos{\left(7 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \cos{\left(7 x \right)} = \cos{\left(7 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \cos{\left(7 x \right)} = \left\langle -1, 1\right\rangle$$
More at x→-oo
Rapid solution [src]
1
$$1$$
Numerical answer [src]
1.0
1.0
Graphique
Limite d'une fonction cos(7*x)