Mister Exam

Other calculators:


cos(pi*n)/n

Limit of the function cos(pi*n)/n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /cos(pi*n)\
 lim |---------|
n->oo\    n    /
limn(cos(πn)n)\lim_{n \to \infty}\left(\frac{\cos{\left(\pi n \right)}}{n}\right)
Limit(cos(pi*n)/n, n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2020
Rapid solution [src]
0
00
Other limits n→0, -oo, +oo, 1
limn(cos(πn)n)=0\lim_{n \to \infty}\left(\frac{\cos{\left(\pi n \right)}}{n}\right) = 0
limn0(cos(πn)n)=\lim_{n \to 0^-}\left(\frac{\cos{\left(\pi n \right)}}{n}\right) = -\infty
More at n→0 from the left
limn0+(cos(πn)n)=\lim_{n \to 0^+}\left(\frac{\cos{\left(\pi n \right)}}{n}\right) = \infty
More at n→0 from the right
limn1(cos(πn)n)=1\lim_{n \to 1^-}\left(\frac{\cos{\left(\pi n \right)}}{n}\right) = -1
More at n→1 from the left
limn1+(cos(πn)n)=1\lim_{n \to 1^+}\left(\frac{\cos{\left(\pi n \right)}}{n}\right) = -1
More at n→1 from the right
limn(cos(πn)n)=0\lim_{n \to -\infty}\left(\frac{\cos{\left(\pi n \right)}}{n}\right) = 0
More at n→-oo
The graph
Limit of the function cos(pi*n)/n