Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((5+6*x)/(-10+x))^(5*x)
Limit of (-2+x)^(-2)
Limit of log(1+x)/log(2+x)
Limit of (5+3*x)/(7+2*x)
Sum of series
:
cos(pi*n)/n
Identical expressions
cos(pi*n)/n
co sinus of e of ( Pi multiply by n) divide by n
cos(pin)/n
cospin/n
cos(pi*n) divide by n
Limit of the function
/
cos(pi*n)/n
Limit of the function cos(pi*n)/n
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/cos(pi*n)\ lim |---------| n->oo\ n /
lim
n
→
∞
(
cos
(
π
n
)
n
)
\lim_{n \to \infty}\left(\frac{\cos{\left(\pi n \right)}}{n}\right)
n
→
∞
lim
(
n
cos
(
πn
)
)
Limit(cos(pi*n)/n, n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-20
20
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits n→0, -oo, +oo, 1
lim
n
→
∞
(
cos
(
π
n
)
n
)
=
0
\lim_{n \to \infty}\left(\frac{\cos{\left(\pi n \right)}}{n}\right) = 0
n
→
∞
lim
(
n
cos
(
πn
)
)
=
0
lim
n
→
0
−
(
cos
(
π
n
)
n
)
=
−
∞
\lim_{n \to 0^-}\left(\frac{\cos{\left(\pi n \right)}}{n}\right) = -\infty
n
→
0
−
lim
(
n
cos
(
πn
)
)
=
−
∞
More at n→0 from the left
lim
n
→
0
+
(
cos
(
π
n
)
n
)
=
∞
\lim_{n \to 0^+}\left(\frac{\cos{\left(\pi n \right)}}{n}\right) = \infty
n
→
0
+
lim
(
n
cos
(
πn
)
)
=
∞
More at n→0 from the right
lim
n
→
1
−
(
cos
(
π
n
)
n
)
=
−
1
\lim_{n \to 1^-}\left(\frac{\cos{\left(\pi n \right)}}{n}\right) = -1
n
→
1
−
lim
(
n
cos
(
πn
)
)
=
−
1
More at n→1 from the left
lim
n
→
1
+
(
cos
(
π
n
)
n
)
=
−
1
\lim_{n \to 1^+}\left(\frac{\cos{\left(\pi n \right)}}{n}\right) = -1
n
→
1
+
lim
(
n
cos
(
πn
)
)
=
−
1
More at n→1 from the right
lim
n
→
−
∞
(
cos
(
π
n
)
n
)
=
0
\lim_{n \to -\infty}\left(\frac{\cos{\left(\pi n \right)}}{n}\right) = 0
n
→
−
∞
lim
(
n
cos
(
πn
)
)
=
0
More at n→-oo
The graph