Integral of y+y^2 dy
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of yn is n+1yn+1 when n=−1:
∫y2dy=3y3
-
The integral of yn is n+1yn+1 when n=−1:
∫ydy=2y2
The result is: 3y3+2y2
-
Now simplify:
6y2(2y+3)
-
Add the constant of integration:
6y2(2y+3)+constant
The answer is:
6y2(2y+3)+constant
The answer (Indefinite)
[src]
/
| 2 3
| / 2\ y y
| \y + y / dy = C + -- + --
| 2 3
/
∫(y2+y)dy=C+3y3+2y2
2 3
14 x x
-- - -- - --
3 2 3
−3x3−2x2+314
=
2 3
14 x x
-- - -- - --
3 2 3
−3x3−2x2+314
Use the examples entering the upper and lower limits of integration.