Mister Exam

Other calculators

Integral of y+y^2 dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2            
  /            
 |             
 |  /     2\   
 |  \y + y / dy
 |             
/              
x              
x2(y2+y)dy\int\limits_{x}^{2} \left(y^{2} + y\right)\, dy
Integral(y + y^2, (y, x, 2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of yny^{n} is yn+1n+1\frac{y^{n + 1}}{n + 1} when n1n \neq -1:

      y2dy=y33\int y^{2}\, dy = \frac{y^{3}}{3}

    1. The integral of yny^{n} is yn+1n+1\frac{y^{n + 1}}{n + 1} when n1n \neq -1:

      ydy=y22\int y\, dy = \frac{y^{2}}{2}

    The result is: y33+y22\frac{y^{3}}{3} + \frac{y^{2}}{2}

  2. Now simplify:

    y2(2y+3)6\frac{y^{2} \left(2 y + 3\right)}{6}

  3. Add the constant of integration:

    y2(2y+3)6+constant\frac{y^{2} \left(2 y + 3\right)}{6}+ \mathrm{constant}


The answer is:

y2(2y+3)6+constant\frac{y^{2} \left(2 y + 3\right)}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                         
 |                    2    3
 | /     2\          y    y 
 | \y + y / dy = C + -- + --
 |                   2    3 
/                           
(y2+y)dy=C+y33+y22\int \left(y^{2} + y\right)\, dy = C + \frac{y^{3}}{3} + \frac{y^{2}}{2}
The answer [src]
      2    3
14   x    x 
-- - -- - --
3    2    3 
x33x22+143- \frac{x^{3}}{3} - \frac{x^{2}}{2} + \frac{14}{3}
=
=
      2    3
14   x    x 
-- - -- - --
3    2    3 
x33x22+143- \frac{x^{3}}{3} - \frac{x^{2}}{2} + \frac{14}{3}
14/3 - x^2/2 - x^3/3

    Use the examples entering the upper and lower limits of integration.