Mister Exam

Integral of xcos(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  x*cos(5*x) dx
 |               
/                
0                
$$\int\limits_{0}^{1} x \cos{\left(5 x \right)}\, dx$$
Integral(x*cos(5*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                     cos(5*x)   x*sin(5*x)
 | x*cos(5*x) dx = C + -------- + ----------
 |                        25          5     
/                                           
$$\int x \cos{\left(5 x \right)}\, dx = C + \frac{x \sin{\left(5 x \right)}}{5} + \frac{\cos{\left(5 x \right)}}{25}$$
The graph
The answer [src]
  1    sin(5)   cos(5)
- -- + ------ + ------
  25     5        25  
$$\frac{\sin{\left(5 \right)}}{5} - \frac{1}{25} + \frac{\cos{\left(5 \right)}}{25}$$
=
=
  1    sin(5)   cos(5)
- -- + ------ + ------
  25     5        25  
$$\frac{\sin{\left(5 \right)}}{5} - \frac{1}{25} + \frac{\cos{\left(5 \right)}}{25}$$
-1/25 + sin(5)/5 + cos(5)/25
Numerical answer [src]
-0.220438367514099
-0.220438367514099
The graph
Integral of xcos(5x) dx

    Use the examples entering the upper and lower limits of integration.