Mister Exam

Other calculators

Integral of y-y^2 dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  /     2\   
 |  \y - y / dy
 |             
/              
0              
$$\int\limits_{0}^{1} \left(- y^{2} + y\right)\, dy$$
Integral(y - y^2, (y, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of is when :

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                         
 |                    2    3
 | /     2\          y    y 
 | \y - y / dy = C + -- - --
 |                   2    3 
/                           
$$\int \left(- y^{2} + y\right)\, dy = C - \frac{y^{3}}{3} + \frac{y^{2}}{2}$$
The graph
The answer [src]
1/6
$$\frac{1}{6}$$
=
=
1/6
$$\frac{1}{6}$$
1/6
Numerical answer [src]
0.166666666666667
0.166666666666667

    Use the examples entering the upper and lower limits of integration.