Integral of y-y^2 dy
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−y2)dy=−∫y2dy
-
The integral of yn is n+1yn+1 when n=−1:
∫y2dy=3y3
So, the result is: −3y3
-
The integral of yn is n+1yn+1 when n=−1:
∫ydy=2y2
The result is: −3y3+2y2
-
Now simplify:
6y2(3−2y)
-
Add the constant of integration:
6y2(3−2y)+constant
The answer is:
6y2(3−2y)+constant
The answer (Indefinite)
[src]
/
| 2 3
| / 2\ y y
| \y - y / dy = C + -- - --
| 2 3
/
∫(−y2+y)dy=C−3y3+2y2
The graph
Use the examples entering the upper and lower limits of integration.