Mister Exam

Other calculators

Integral of 2xy+(y^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  /         2\   
 |  \2*x*y + y / dx
 |                 
/                  
0                  
01(2xy+y2)dx\int\limits_{0}^{1} \left(2 x y + y^{2}\right)\, dx
Integral(2*x*y + y^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      2xydx=2yxdx\int 2 x y\, dx = 2 y \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x2yx^{2} y

    1. The integral of a constant is the constant times the variable of integration:

      y2dx=xy2\int y^{2}\, dx = x y^{2}

    The result is: x2y+xy2x^{2} y + x y^{2}

  2. Now simplify:

    xy(x+y)x y \left(x + y\right)

  3. Add the constant of integration:

    xy(x+y)+constantx y \left(x + y\right)+ \mathrm{constant}


The answer is:

xy(x+y)+constantx y \left(x + y\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                                  
 | /         2\             2      2
 | \2*x*y + y / dx = C + x*y  + y*x 
 |                                  
/                                   
(2xy+y2)dx=C+x2y+xy2\int \left(2 x y + y^{2}\right)\, dx = C + x^{2} y + x y^{2}
The answer [src]
     2
y + y 
y2+yy^{2} + y
=
=
     2
y + y 
y2+yy^{2} + y

    Use the examples entering the upper and lower limits of integration.