Mister Exam

Integral of y*ln(y) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  y*log(y) dy
 |             
/              
0              
01ylog(y)dy\int\limits_{0}^{1} y \log{\left(y \right)}\, dy
Integral(y*log(y), (y, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(y)u = \log{\left(y \right)}.

      Then let du=dyydu = \frac{dy}{y} and substitute dudu:

      ue2udu\int u e^{2 u}\, du

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(u)=uu{\left(u \right)} = u and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

        Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

        To find v(u)v{\left(u \right)}:

        1. Let u=2uu = 2 u.

          Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

          eu2du\int \frac{e^{u}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            False\text{False}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu2\frac{e^{u}}{2}

          Now substitute uu back in:

          e2u2\frac{e^{2 u}}{2}

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        e2u2du=e2udu2\int \frac{e^{2 u}}{2}\, du = \frac{\int e^{2 u}\, du}{2}

        1. Let u=2uu = 2 u.

          Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

          eu2du\int \frac{e^{u}}{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            False\text{False}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu2\frac{e^{u}}{2}

          Now substitute uu back in:

          e2u2\frac{e^{2 u}}{2}

        So, the result is: e2u4\frac{e^{2 u}}{4}

      Now substitute uu back in:

      y2log(y)2y24\frac{y^{2} \log{\left(y \right)}}{2} - \frac{y^{2}}{4}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(y)=log(y)u{\left(y \right)} = \log{\left(y \right)} and let dv(y)=y\operatorname{dv}{\left(y \right)} = y.

      Then du(y)=1y\operatorname{du}{\left(y \right)} = \frac{1}{y}.

      To find v(y)v{\left(y \right)}:

      1. The integral of yny^{n} is yn+1n+1\frac{y^{n + 1}}{n + 1} when n1n \neq -1:

        ydy=y22\int y\, dy = \frac{y^{2}}{2}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      y2dy=ydy2\int \frac{y}{2}\, dy = \frac{\int y\, dy}{2}

      1. The integral of yny^{n} is yn+1n+1\frac{y^{n + 1}}{n + 1} when n1n \neq -1:

        ydy=y22\int y\, dy = \frac{y^{2}}{2}

      So, the result is: y24\frac{y^{2}}{4}

  2. Now simplify:

    y2(2log(y)1)4\frac{y^{2} \left(2 \log{\left(y \right)} - 1\right)}{4}

  3. Add the constant of integration:

    y2(2log(y)1)4+constant\frac{y^{2} \left(2 \log{\left(y \right)} - 1\right)}{4}+ \mathrm{constant}


The answer is:

y2(2log(y)1)4+constant\frac{y^{2} \left(2 \log{\left(y \right)} - 1\right)}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                   2    2       
 |                   y    y *log(y)
 | y*log(y) dy = C - -- + ---------
 |                   4        2    
/                                  
ylog(y)dy=C+y2log(y)2y24\int y \log{\left(y \right)}\, dy = C + \frac{y^{2} \log{\left(y \right)}}{2} - \frac{y^{2}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.5-0.5
The answer [src]
-1/4
14- \frac{1}{4}
=
=
-1/4
14- \frac{1}{4}
-1/4
Numerical answer [src]
-0.25
-0.25

    Use the examples entering the upper and lower limits of integration.