Integral of y*ln(y) dy
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=log(y).
Then let du=ydy and substitute du:
∫ue2udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e2u.
Then du(u)=1.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2udu=2∫e2udu
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
So, the result is: 4e2u
Now substitute u back in:
2y2log(y)−4y2
Method #2
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(y)=log(y) and let dv(y)=y.
Then du(y)=y1.
To find v(y):
-
The integral of yn is n+1yn+1 when n=−1:
∫ydy=2y2
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2ydy=2∫ydy
-
The integral of yn is n+1yn+1 when n=−1:
∫ydy=2y2
So, the result is: 4y2
-
Now simplify:
4y2(2log(y)−1)
-
Add the constant of integration:
4y2(2log(y)−1)+constant
The answer is:
4y2(2log(y)−1)+constant
The answer (Indefinite)
[src]
/ 2 2
| y y *log(y)
| y*log(y) dy = C - -- + ---------
| 4 2
/
∫ylog(y)dy=C+2y2log(y)−4y2
The graph
Use the examples entering the upper and lower limits of integration.