Mister Exam

Other calculators

Integral of 1/((y*ln)*(y))dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      1        
 |  ---------- dx
 |  y*log(y)*y   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{1}{y y \log{\left(y \right)}}\, dx$$
Integral(1/((y*log(y))*y), (x, 0, 1))
Detail solution
  1. The integral of a constant is the constant times the variable of integration:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 |     1                     1    
 | ---------- dx = C + x*---------
 | y*log(y)*y             2       
 |                       y *log(y)
/                                 
$$\int \frac{1}{y y \log{\left(y \right)}}\, dx = C + x \frac{1}{y^{2} \log{\left(y \right)}}$$
The answer [src]
    1    
---------
 2       
y *log(y)
$$\frac{1}{y^{2} \log{\left(y \right)}}$$
=
=
    1    
---------
 2       
y *log(y)
$$\frac{1}{y^{2} \log{\left(y \right)}}$$
1/(y^2*log(y))

    Use the examples entering the upper and lower limits of integration.