Mister Exam

Other calculators


xdx/(x^2+4)^6

Integral of xdx/(x^2+4)^6 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |      x       
 |  --------- dx
 |          6   
 |  / 2    \    
 |  \x  + 4/    
 |              
/               
0               
01x(x2+4)6dx\int\limits_{0}^{1} \frac{x}{\left(x^{2} + 4\right)^{6}}\, dx
Integral(x/(x^2 + 4)^6, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      x(x2+4)6=xx12+24x10+240x8+1280x6+3840x4+6144x2+4096\frac{x}{\left(x^{2} + 4\right)^{6}} = \frac{x}{x^{12} + 24 x^{10} + 240 x^{8} + 1280 x^{6} + 3840 x^{4} + 6144 x^{2} + 4096}

    2. Let u=x2u = x^{2}.

      Then let du=2xdxdu = 2 x dx and substitute dudu:

      12u6+48u5+480u4+2560u3+7680u2+12288u+8192du\int \frac{1}{2 u^{6} + 48 u^{5} + 480 u^{4} + 2560 u^{3} + 7680 u^{2} + 12288 u + 8192}\, du

      1. Rewrite the integrand:

        12u6+48u5+480u4+2560u3+7680u2+12288u+8192=12(u+4)6\frac{1}{2 u^{6} + 48 u^{5} + 480 u^{4} + 2560 u^{3} + 7680 u^{2} + 12288 u + 8192} = \frac{1}{2 \left(u + 4\right)^{6}}

      2. The integral of a constant times a function is the constant times the integral of the function:

        12(u+4)6du=1(u+4)6du2\int \frac{1}{2 \left(u + 4\right)^{6}}\, du = \frac{\int \frac{1}{\left(u + 4\right)^{6}}\, du}{2}

        1. Let u=u+4u = u + 4.

          Then let du=dudu = du and substitute dudu:

          1u6du\int \frac{1}{u^{6}}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            1u6du=15u5\int \frac{1}{u^{6}}\, du = - \frac{1}{5 u^{5}}

          Now substitute uu back in:

          15(u+4)5- \frac{1}{5 \left(u + 4\right)^{5}}

        So, the result is: 110(u+4)5- \frac{1}{10 \left(u + 4\right)^{5}}

      Now substitute uu back in:

      110(x2+4)5- \frac{1}{10 \left(x^{2} + 4\right)^{5}}

    Method #2

    1. Rewrite the integrand:

      x(x2+4)6=xx12+24x10+240x8+1280x6+3840x4+6144x2+4096\frac{x}{\left(x^{2} + 4\right)^{6}} = \frac{x}{x^{12} + 24 x^{10} + 240 x^{8} + 1280 x^{6} + 3840 x^{4} + 6144 x^{2} + 4096}

    2. Let u=x2u = x^{2}.

      Then let du=2xdxdu = 2 x dx and substitute dudu:

      12u6+48u5+480u4+2560u3+7680u2+12288u+8192du\int \frac{1}{2 u^{6} + 48 u^{5} + 480 u^{4} + 2560 u^{3} + 7680 u^{2} + 12288 u + 8192}\, du

      1. Rewrite the integrand:

        12u6+48u5+480u4+2560u3+7680u2+12288u+8192=12(u+4)6\frac{1}{2 u^{6} + 48 u^{5} + 480 u^{4} + 2560 u^{3} + 7680 u^{2} + 12288 u + 8192} = \frac{1}{2 \left(u + 4\right)^{6}}

      2. The integral of a constant times a function is the constant times the integral of the function:

        12(u+4)6du=1(u+4)6du2\int \frac{1}{2 \left(u + 4\right)^{6}}\, du = \frac{\int \frac{1}{\left(u + 4\right)^{6}}\, du}{2}

        1. Let u=u+4u = u + 4.

          Then let du=dudu = du and substitute dudu:

          1u6du\int \frac{1}{u^{6}}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            1u6du=15u5\int \frac{1}{u^{6}}\, du = - \frac{1}{5 u^{5}}

          Now substitute uu back in:

          15(u+4)5- \frac{1}{5 \left(u + 4\right)^{5}}

        So, the result is: 110(u+4)5- \frac{1}{10 \left(u + 4\right)^{5}}

      Now substitute uu back in:

      110(x2+4)5- \frac{1}{10 \left(x^{2} + 4\right)^{5}}

  2. Add the constant of integration:

    110(x2+4)5+constant- \frac{1}{10 \left(x^{2} + 4\right)^{5}}+ \mathrm{constant}


The answer is:

110(x2+4)5+constant- \frac{1}{10 \left(x^{2} + 4\right)^{5}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                                
 |     x                   1      
 | --------- dx = C - ------------
 |         6                     5
 | / 2    \              /     2\ 
 | \x  + 4/           10*\4 + x / 
 |                                
/                                 
x(x2+4)6dx=C110(x2+4)5\int \frac{x}{\left(x^{2} + 4\right)^{6}}\, dx = C - \frac{1}{10 \left(x^{2} + 4\right)^{5}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.0002-0.0002
The answer [src]
  2101  
--------
32000000
210132000000\frac{2101}{32000000}
=
=
  2101  
--------
32000000
210132000000\frac{2101}{32000000}
2101/32000000
Numerical answer [src]
6.565625e-5
6.565625e-5
The graph
Integral of xdx/(x^2+4)^6 dx

    Use the examples entering the upper and lower limits of integration.