Integral of xdx/(x^2+4)^6 dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(x2+4)6x=x12+24x10+240x8+1280x6+3840x4+6144x2+4096x
-
Let u=x2.
Then let du=2xdx and substitute du:
∫2u6+48u5+480u4+2560u3+7680u2+12288u+81921du
-
Rewrite the integrand:
2u6+48u5+480u4+2560u3+7680u2+12288u+81921=2(u+4)61
-
The integral of a constant times a function is the constant times the integral of the function:
∫2(u+4)61du=2∫(u+4)61du
-
Let u=u+4.
Then let du=du and substitute du:
∫u61du
-
The integral of un is n+1un+1 when n=−1:
∫u61du=−5u51
Now substitute u back in:
−5(u+4)51
So, the result is: −10(u+4)51
Now substitute u back in:
−10(x2+4)51
Method #2
-
Rewrite the integrand:
(x2+4)6x=x12+24x10+240x8+1280x6+3840x4+6144x2+4096x
-
Let u=x2.
Then let du=2xdx and substitute du:
∫2u6+48u5+480u4+2560u3+7680u2+12288u+81921du
-
Rewrite the integrand:
2u6+48u5+480u4+2560u3+7680u2+12288u+81921=2(u+4)61
-
The integral of a constant times a function is the constant times the integral of the function:
∫2(u+4)61du=2∫(u+4)61du
-
Let u=u+4.
Then let du=du and substitute du:
∫u61du
-
The integral of un is n+1un+1 when n=−1:
∫u61du=−5u51
Now substitute u back in:
−5(u+4)51
So, the result is: −10(u+4)51
Now substitute u back in:
−10(x2+4)51
-
Add the constant of integration:
−10(x2+4)51+constant
The answer is:
−10(x2+4)51+constant
The answer (Indefinite)
[src]
/
|
| x 1
| --------- dx = C - ------------
| 6 5
| / 2 \ / 2\
| \x + 4/ 10*\4 + x /
|
/
∫(x2+4)6xdx=C−10(x2+4)51
The graph
320000002101
=
320000002101
Use the examples entering the upper and lower limits of integration.