Mister Exam

Integral of xln(2-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  x*log(2 - x) dx
 |                 
/                  
0                  
01xlog(2x)dx\int\limits_{0}^{1} x \log{\left(2 - x \right)}\, dx
Integral(x*log(2 - x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=log(2x)u{\left(x \right)} = \log{\left(2 - x \right)} and let dv(x)=x\operatorname{dv}{\left(x \right)} = x.

    Then du(x)=12x\operatorname{du}{\left(x \right)} = - \frac{1}{2 - x}.

    To find v(x)v{\left(x \right)}:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    (x22(2x))dx=x22xdx2\int \left(- \frac{x^{2}}{2 \left(2 - x\right)}\right)\, dx = - \frac{\int \frac{x^{2}}{2 - x}\, dx}{2}

    1. There are multiple ways to do this integral.

      Method #1

      1. Rewrite the integrand:

        x22x=x24x2\frac{x^{2}}{2 - x} = - x - 2 - \frac{4}{x - 2}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          So, the result is: x22- \frac{x^{2}}{2}

        1. The integral of a constant is the constant times the variable of integration:

          (2)dx=2x\int \left(-2\right)\, dx = - 2 x

        1. The integral of a constant times a function is the constant times the integral of the function:

          (4x2)dx=41x2dx\int \left(- \frac{4}{x - 2}\right)\, dx = - 4 \int \frac{1}{x - 2}\, dx

          1. Let u=x2u = x - 2.

            Then let du=dxdu = dx and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(x2)\log{\left(x - 2 \right)}

          So, the result is: 4log(x2)- 4 \log{\left(x - 2 \right)}

        The result is: x222x4log(x2)- \frac{x^{2}}{2} - 2 x - 4 \log{\left(x - 2 \right)}

      Method #2

      1. Rewrite the integrand:

        x22x=x2x2\frac{x^{2}}{2 - x} = - \frac{x^{2}}{x - 2}

      2. The integral of a constant times a function is the constant times the integral of the function:

        (x2x2)dx=x2x2dx\int \left(- \frac{x^{2}}{x - 2}\right)\, dx = - \int \frac{x^{2}}{x - 2}\, dx

        1. Rewrite the integrand:

          x2x2=x+2+4x2\frac{x^{2}}{x - 2} = x + 2 + \frac{4}{x - 2}

        2. Integrate term-by-term:

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          1. The integral of a constant is the constant times the variable of integration:

            2dx=2x\int 2\, dx = 2 x

          1. The integral of a constant times a function is the constant times the integral of the function:

            4x2dx=41x2dx\int \frac{4}{x - 2}\, dx = 4 \int \frac{1}{x - 2}\, dx

            1. Let u=x2u = x - 2.

              Then let du=dxdu = dx and substitute dudu:

              1udu\int \frac{1}{u}\, du

              1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

              Now substitute uu back in:

              log(x2)\log{\left(x - 2 \right)}

            So, the result is: 4log(x2)4 \log{\left(x - 2 \right)}

          The result is: x22+2x+4log(x2)\frac{x^{2}}{2} + 2 x + 4 \log{\left(x - 2 \right)}

        So, the result is: x222x4log(x2)- \frac{x^{2}}{2} - 2 x - 4 \log{\left(x - 2 \right)}

    So, the result is: x24+x+2log(x2)\frac{x^{2}}{4} + x + 2 \log{\left(x - 2 \right)}

  3. Add the constant of integration:

    x2log(2x)2x24x2log(x2)+constant\frac{x^{2} \log{\left(2 - x \right)}}{2} - \frac{x^{2}}{4} - x - 2 \log{\left(x - 2 \right)}+ \mathrm{constant}


The answer is:

x2log(2x)2x24x2log(x2)+constant\frac{x^{2} \log{\left(2 - x \right)}}{2} - \frac{x^{2}}{4} - x - 2 \log{\left(x - 2 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                           2    2           
 |                                           x    x *log(2 - x)
 | x*log(2 - x) dx = C - x - 2*log(-2 + x) - -- + -------------
 |                                           4          2      
/                                                              
xlog(2x)dx=C+x2log(2x)2x24x2log(x2)\int x \log{\left(2 - x \right)}\, dx = C + \frac{x^{2} \log{\left(2 - x \right)}}{2} - \frac{x^{2}}{4} - x - 2 \log{\left(x - 2 \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.00.4
The answer [src]
-5/4 + 2*log(2)
54+2log(2)- \frac{5}{4} + 2 \log{\left(2 \right)}
=
=
-5/4 + 2*log(2)
54+2log(2)- \frac{5}{4} + 2 \log{\left(2 \right)}
-5/4 + 2*log(2)
Numerical answer [src]
0.136294361119891
0.136294361119891
The graph
Integral of xln(2-x) dx

    Use the examples entering the upper and lower limits of integration.