Mister Exam

Other calculators

Integral of (x^2+y)+(2x-y) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  / 2              \   
 |  \x  + y + 2*x - y/ dy
 |                       
/                        
a*b                      
$$\int\limits_{a b}^{1} \left(\left(2 x - y\right) + \left(x^{2} + y\right)\right)\, dy$$
Integral(x^2 + y + 2*x - y, (y, a*b, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of is when :

      The result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                        
 |                                         
 | / 2              \             2        
 | \x  + y + 2*x - y/ dy = C + y*x  + 2*x*y
 |                                         
/                                          
$$\int \left(\left(2 x - y\right) + \left(x^{2} + y\right)\right)\, dy = C + x^{2} y + 2 x y$$
The answer [src]
 2             / 2      \
x  + 2*x - a*b*\x  + 2*x/
$$- a b \left(x^{2} + 2 x\right) + x^{2} + 2 x$$
=
=
 2             / 2      \
x  + 2*x - a*b*\x  + 2*x/
$$- a b \left(x^{2} + 2 x\right) + x^{2} + 2 x$$
x^2 + 2*x - a*b*(x^2 + 2*x)

    Use the examples entering the upper and lower limits of integration.