Mister Exam

Other calculators


(x^2-2)^2

Integral of (x^2-2)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |          2   
 |  / 2    \    
 |  \x  - 2/  dx
 |              
/               
0               
$$\int\limits_{0}^{1} \left(x^{2} - 2\right)^{2}\, dx$$
Integral((x^2 - 2)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                                   
 |         2                   3    5
 | / 2    \                 4*x    x 
 | \x  - 2/  dx = C + 4*x - ---- + --
 |                           3     5 
/                                    
$$\int \left(x^{2} - 2\right)^{2}\, dx = C + \frac{x^{5}}{5} - \frac{4 x^{3}}{3} + 4 x$$
The graph
The answer [src]
43
--
15
$$\frac{43}{15}$$
=
=
43
--
15
$$\frac{43}{15}$$
43/15
Numerical answer [src]
2.86666666666667
2.86666666666667
The graph
Integral of (x^2-2)^2 dx

    Use the examples entering the upper and lower limits of integration.