Mister Exam

Other calculators


(x^2+2)^2

Integral of (x^2+2)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |          2   
 |  / 2    \    
 |  \x  + 2/  dx
 |              
/               
0               
01(x2+2)2dx\int\limits_{0}^{1} \left(x^{2} + 2\right)^{2}\, dx
Integral((x^2 + 2)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    (x2+2)2=x4+4x2+4\left(x^{2} + 2\right)^{2} = x^{4} + 4 x^{2} + 4

  2. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      4x2dx=4x2dx\int 4 x^{2}\, dx = 4 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: 4x33\frac{4 x^{3}}{3}

    1. The integral of a constant is the constant times the variable of integration:

      4dx=4x\int 4\, dx = 4 x

    The result is: x55+4x33+4x\frac{x^{5}}{5} + \frac{4 x^{3}}{3} + 4 x

  3. Now simplify:

    x(3x4+20x2+60)15\frac{x \left(3 x^{4} + 20 x^{2} + 60\right)}{15}

  4. Add the constant of integration:

    x(3x4+20x2+60)15+constant\frac{x \left(3 x^{4} + 20 x^{2} + 60\right)}{15}+ \mathrm{constant}


The answer is:

x(3x4+20x2+60)15+constant\frac{x \left(3 x^{4} + 20 x^{2} + 60\right)}{15}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                                   
 |         2                 5      3
 | / 2    \                 x    4*x 
 | \x  + 2/  dx = C + 4*x + -- + ----
 |                          5     3  
/                                    
(x2+2)2dx=C+x55+4x33+4x\int \left(x^{2} + 2\right)^{2}\, dx = C + \frac{x^{5}}{5} + \frac{4 x^{3}}{3} + 4 x
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
83
--
15
8315\frac{83}{15}
=
=
83
--
15
8315\frac{83}{15}
83/15
Numerical answer [src]
5.53333333333333
5.53333333333333
The graph
Integral of (x^2+2)^2 dx

    Use the examples entering the upper and lower limits of integration.