Mister Exam

Other calculators

Integral of (log(x)-1)/x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  log(x) - 1   
 |  ---------- dx
 |       2       
 |      x        
 |               
/                
0                
01log(x)1x2dx\int\limits_{0}^{1} \frac{\log{\left(x \right)} - 1}{x^{2}}\, dx
Integral((log(x) - 1)/x^2, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(x)u = \log{\left(x \right)}.

      Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

      (u1)eudu\int \left(u - 1\right) e^{- u}\, du

      1. Let u=uu = - u.

        Then let du=dudu = - du and substitute dudu:

        (ueu+eu)du\int \left(u e^{u} + e^{u}\right)\, du

        1. Integrate term-by-term:

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

            Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

            To find v(u)v{\left(u \right)}:

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            Now evaluate the sub-integral.

          2. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          The result is: ueuu e^{u}

        Now substitute uu back in:

        ueu- u e^{- u}

      Now substitute uu back in:

      log(x)x- \frac{\log{\left(x \right)}}{x}

    Method #2

    1. Rewrite the integrand:

      log(x)1x2=log(x)x21x2\frac{\log{\left(x \right)} - 1}{x^{2}} = \frac{\log{\left(x \right)}}{x^{2}} - \frac{1}{x^{2}}

    2. Integrate term-by-term:

      1. Let u=log(x)u = \log{\left(x \right)}.

        Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

        ueudu\int u e^{- u}\, du

        1. Let u=uu = - u.

          Then let du=dudu = - du and substitute dudu:

          ueudu\int u e^{u}\, du

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

            Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

            To find v(u)v{\left(u \right)}:

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            Now evaluate the sub-integral.

          2. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          Now substitute uu back in:

          ueueu- u e^{- u} - e^{- u}

        Now substitute uu back in:

        log(x)x1x- \frac{\log{\left(x \right)}}{x} - \frac{1}{x}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1x2)dx=1x2dx\int \left(- \frac{1}{x^{2}}\right)\, dx = - \int \frac{1}{x^{2}}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          1x2dx=1x\int \frac{1}{x^{2}}\, dx = - \frac{1}{x}

        So, the result is: 1x\frac{1}{x}

      The result is: log(x)x- \frac{\log{\left(x \right)}}{x}

  2. Add the constant of integration:

    log(x)x+constant- \frac{\log{\left(x \right)}}{x}+ \mathrm{constant}


The answer is:

log(x)x+constant- \frac{\log{\left(x \right)}}{x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                           
 | log(x) - 1          log(x)
 | ---------- dx = C - ------
 |      2                x   
 |     x                     
 |                           
/                            
log(x)1x2dx=Clog(x)x\int \frac{\log{\left(x \right)} - 1}{x^{2}}\, dx = C - \frac{\log{\left(x \right)}}{x}
The answer [src]
-oo
-\infty
=
=
-oo
-\infty
-oo
Numerical answer [src]
-6.0760804301603e+20
-6.0760804301603e+20

    Use the examples entering the upper and lower limits of integration.