Mister Exam

Other calculators


x^2-9

Integral of x^2-9 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -3            
  /            
 |             
 |  / 2    \   
 |  \x  - 9/ dx
 |             
/              
3              
33(x29)dx\int\limits_{3}^{-3} \left(x^{2} - 9\right)\, dx
Integral(x^2 - 9, (x, 3, -3))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

    1. The integral of a constant is the constant times the variable of integration:

      (9)dx=9x\int \left(-9\right)\, dx = - 9 x

    The result is: x339x\frac{x^{3}}{3} - 9 x

  2. Now simplify:

    x(x227)3\frac{x \left(x^{2} - 27\right)}{3}

  3. Add the constant of integration:

    x(x227)3+constant\frac{x \left(x^{2} - 27\right)}{3}+ \mathrm{constant}


The answer is:

x(x227)3+constant\frac{x \left(x^{2} - 27\right)}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                          3
 | / 2    \                x 
 | \x  - 9/ dx = C - 9*x + --
 |                         3 
/                            
(x29)dx=C+x339x\int \left(x^{2} - 9\right)\, dx = C + \frac{x^{3}}{3} - 9 x
The graph
-3.0-2.5-2.0-1.5-1.0-0.53.00.00.51.01.52.02.5-5050
The answer [src]
36
3636
=
=
36
3636
36
Numerical answer [src]
36.0
36.0
The graph
Integral of x^2-9 dx

    Use the examples entering the upper and lower limits of integration.