Integral of (x^2-9x^4) dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−9x4)dx=−∫9x4dx
-
The integral of a constant times a function is the constant times the integral of the function:
∫9x4dx=9∫x4dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x4dx=5x5
So, the result is: 59x5
So, the result is: −59x5
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
The result is: −59x5+3x3
-
Now simplify:
15x3⋅(5−27x2)
-
Add the constant of integration:
15x3⋅(5−27x2)+constant
The answer is:
15x3⋅(5−27x2)+constant
The answer (Indefinite)
[src]
/
| 5 3
| / 2 4\ 9*x x
| \x - 9*x / dx = C - ---- + --
| 5 3
/
3x3−59x5
The graph
−1544
=
−1544
Use the examples entering the upper and lower limits of integration.