Integral of √(x^2-1) dx
The solution
Detail solution
SqrtQuadraticRule(a=-1, b=0, c=1, context=sqrt(x**2 - 1*1), symbol=x)
-
Add the constant of integration:
2xx2−1−2log(2x+2x2−1)+constant
The answer is:
2xx2−1−2log(2x+2x2−1)+constant
The answer (Indefinite)
[src]
/
| / _________\ _________
| ________ | / 2 | / 2
| / 2 log\2*x + 2*\/ -1 + x / x*\/ -1 + x
| \/ x - 1 dx = C - ------------------------- + --------------
| 2 2
/
2xx2−1−2log(2x2−1+2x)
The graph
2log(2i)−2log2
=
(0.0 + 0.785398163397448j)
(0.0 + 0.785398163397448j)
Use the examples entering the upper and lower limits of integration.