Mister Exam

Other calculators


dx/X^(2)(rootx^(2)-9)

Integral of dx/X^(2)(rootx^(2)-9) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  6                     
  /                     
 |                      
 |       /     2    \   
 |    1  |  ___     |   
 |  1*--*\\/ x   - 9/ dx
 |     2                
 |    x                 
 |                      
/                       
37                      
--                      
10                      
$$\int\limits_{\frac{37}{10}}^{6} 1 \cdot \frac{1}{x^{2}} \left(\left(\sqrt{x}\right)^{2} - 9\right)\, dx$$
Integral(1*((sqrt(x))^2 - 1*9)/x^2, (x, 37/10, 6))
The answer (Indefinite) [src]
  /                                           
 |                                            
 |      /     2    \                          
 |   1  |  ___     |               /  ___\   9
 | 1*--*\\/ x   - 9/ dx = C + 2*log\\/ x / + -
 |    2                                      x
 |   x                                        
 |                                            
/                                             
$$\log x+{{9}\over{x}}$$
The graph
The answer [src]
  69      /37\         
- -- - log|--| + log(6)
  74      \10/         
$$\log 6-\log \left({{37}\over{10}}\right)-{{69}\over{74}}$$
=
=
  69      /37\         
- -- - log|--| + log(6)
  74      \10/         
$$- \log{\left(\frac{37}{10} \right)} - \frac{69}{74} + \log{\left(6 \right)}$$
Numerical answer [src]
-0.449005782854556
-0.449005782854556
The graph
Integral of dx/X^(2)(rootx^(2)-9) dx

    Use the examples entering the upper and lower limits of integration.