Integral of x^2cosnx dx
The solution
The answer (Indefinite)
[src]
// 3 \
|| x |
|| -- for n = 0|
|| 3 |
/ || |
| ||/sin(n*x) x*cos(n*x) | // x for n = 0\
| 2 |||-------- - ---------- for n != 0 | 2 || |
| x *cos(n*x) dx = C - 2*|<| 2 n | + x *|
n3(n2x2−2)sin(nx)+2nxcos(nx)
/ 2
| 4*sin(pi*n) 2*pi *sin(pi*n) 4*pi*cos(pi*n)
|- ----------- + --------------- + -------------- for And(n > -oo, n < oo, n != 0)
| 3 n 2
| n n
<
| 3
| 2*pi
| ----- otherwise
| 3
\
n32((n2π2−2)sin(nπ)+2nπcos(nπ))
=
/ 2
| 4*sin(pi*n) 2*pi *sin(pi*n) 4*pi*cos(pi*n)
|- ----------- + --------------- + -------------- for And(n > -oo, n < oo, n != 0)
| 3 n 2
| n n
<
| 3
| 2*pi
| ----- otherwise
| 3
\
{n2π2sin(πn)+n24πcos(πn)−n34sin(πn)32π3forn>−∞∧n<∞∧n=0otherwise
Use the examples entering the upper and lower limits of integration.