Integral of (2x^2-5x-7)dx dx
The solution
Detail solution
-
Integrate term-by-term:
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2x2dx=2∫x2dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
So, the result is: 32x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−5x)dx=−5∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: −25x2
The result is: 32x3−25x2
-
The integral of a constant is the constant times the variable of integration:
∫(−7)dx=−7x
The result is: 32x3−25x2−7x
-
Now simplify:
6x(4x2−15x−42)
-
Add the constant of integration:
6x(4x2−15x−42)+constant
The answer is:
6x(4x2−15x−42)+constant
The answer (Indefinite)
[src]
/
| 2 3
| / 2 \ 5*x 2*x
| \2*x - 5*x - 7/ dx = C - 7*x - ---- + ----
| 2 3
/
∫((2x2−5x)−7)dx=C+32x3−25x2−7x
The graph
Use the examples entering the upper and lower limits of integration.