Mister Exam

Integral of 6cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  6*cos(x) dx
 |             
/              
-2             
216cos(x)dx\int\limits_{-2}^{1} 6 \cos{\left(x \right)}\, dx
Integral(6*cos(x), (x, -2, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    6cos(x)dx=6cos(x)dx\int 6 \cos{\left(x \right)}\, dx = 6 \int \cos{\left(x \right)}\, dx

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    So, the result is: 6sin(x)6 \sin{\left(x \right)}

  2. Add the constant of integration:

    6sin(x)+constant6 \sin{\left(x \right)}+ \mathrm{constant}


The answer is:

6sin(x)+constant6 \sin{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                           
 | 6*cos(x) dx = C + 6*sin(x)
 |                           
/                            
6sinx6\,\sin x
The graph
-2.00-1.75-1.50-1.25-1.00-0.75-0.50-0.251.000.000.250.500.75-1010
The answer [src]
6*sin(1) + 6*sin(2)
6(sin2+sin1)6\,\left(\sin 2+\sin 1\right)
=
=
6*sin(1) + 6*sin(2)
6sin(1)+6sin(2)6 \sin{\left(1 \right)} + 6 \sin{\left(2 \right)}
Numerical answer [src]
10.5046104698015
10.5046104698015
The graph
Integral of 6cosx dx

    Use the examples entering the upper and lower limits of integration.