Mister Exam

Other calculators


(1+tgx)/(1-tgx)

Integral of (1+tgx)/(1-tgx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  1 + tan(x)   
 |  ---------- dx
 |  1 - tan(x)   
 |               
/                
0                
01tan(x)+1tan(x)+1dx\int\limits_{0}^{1} \frac{\tan{\left(x \right)} + 1}{- \tan{\left(x \right)} + 1}\, dx
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      tan(x)+11tan(x)=tan(x)1tan(x)1\frac{\tan{\left(x \right)} + 1}{1 - \tan{\left(x \right)}} = \frac{- \tan{\left(x \right)} - 1}{\tan{\left(x \right)} - 1}

    2. Rewrite the integrand:

      tan(x)1tan(x)1=tan(x)tan(x)11tan(x)1\frac{- \tan{\left(x \right)} - 1}{\tan{\left(x \right)} - 1} = - \frac{\tan{\left(x \right)}}{\tan{\left(x \right)} - 1} - \frac{1}{\tan{\left(x \right)} - 1}

    3. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (tan(x)tan(x)1)dx=tan(x)tan(x)1dx\int \left(- \frac{\tan{\left(x \right)}}{\tan{\left(x \right)} - 1}\right)\, dx = - \int \frac{\tan{\left(x \right)}}{\tan{\left(x \right)} - 1}\, dx

        1. Don't know the steps in finding this integral.

          But the integral is

          x2+log(tan(x)1)2log(tan2(x)+1)4\frac{x}{2} + \frac{\log{\left(\tan{\left(x \right)} - 1 \right)}}{2} - \frac{\log{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{4}

        So, the result is: x2log(tan(x)1)2+log(tan2(x)+1)4- \frac{x}{2} - \frac{\log{\left(\tan{\left(x \right)} - 1 \right)}}{2} + \frac{\log{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1tan(x)1)dx=1tan(x)1dx\int \left(- \frac{1}{\tan{\left(x \right)} - 1}\right)\, dx = - \int \frac{1}{\tan{\left(x \right)} - 1}\, dx

        1. Don't know the steps in finding this integral.

          But the integral is

          x2+log(tan(x)1)2log(tan2(x)+1)4- \frac{x}{2} + \frac{\log{\left(\tan{\left(x \right)} - 1 \right)}}{2} - \frac{\log{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{4}

        So, the result is: x2log(tan(x)1)2+log(tan2(x)+1)4\frac{x}{2} - \frac{\log{\left(\tan{\left(x \right)} - 1 \right)}}{2} + \frac{\log{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{4}

      The result is: log(tan(x)1)+log(tan2(x)+1)2- \log{\left(\tan{\left(x \right)} - 1 \right)} + \frac{\log{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2}

    Method #2

    1. Rewrite the integrand:

      tan(x)+11tan(x)=tan(x)1tan(x)+11tan(x)\frac{\tan{\left(x \right)} + 1}{1 - \tan{\left(x \right)}} = \frac{\tan{\left(x \right)}}{1 - \tan{\left(x \right)}} + \frac{1}{1 - \tan{\left(x \right)}}

    2. Integrate term-by-term:

      1. Rewrite the integrand:

        tan(x)1tan(x)=tan(x)tan(x)1\frac{\tan{\left(x \right)}}{1 - \tan{\left(x \right)}} = - \frac{\tan{\left(x \right)}}{\tan{\left(x \right)} - 1}

      2. The integral of a constant times a function is the constant times the integral of the function:

        (tan(x)tan(x)1)dx=tan(x)tan(x)1dx\int \left(- \frac{\tan{\left(x \right)}}{\tan{\left(x \right)} - 1}\right)\, dx = - \int \frac{\tan{\left(x \right)}}{\tan{\left(x \right)} - 1}\, dx

        1. Don't know the steps in finding this integral.

          But the integral is

          x2+log(tan(x)1)2log(tan2(x)+1)4\frac{x}{2} + \frac{\log{\left(\tan{\left(x \right)} - 1 \right)}}{2} - \frac{\log{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{4}

        So, the result is: x2log(tan(x)1)2+log(tan2(x)+1)4- \frac{x}{2} - \frac{\log{\left(\tan{\left(x \right)} - 1 \right)}}{2} + \frac{\log{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{4}

      1. Rewrite the integrand:

        11tan(x)=1tan(x)1\frac{1}{1 - \tan{\left(x \right)}} = - \frac{1}{\tan{\left(x \right)} - 1}

      2. The integral of a constant times a function is the constant times the integral of the function:

        (1tan(x)1)dx=1tan(x)1dx\int \left(- \frac{1}{\tan{\left(x \right)} - 1}\right)\, dx = - \int \frac{1}{\tan{\left(x \right)} - 1}\, dx

        1. Don't know the steps in finding this integral.

          But the integral is

          x2+log(tan(x)1)2log(tan2(x)+1)4- \frac{x}{2} + \frac{\log{\left(\tan{\left(x \right)} - 1 \right)}}{2} - \frac{\log{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{4}

        So, the result is: x2log(tan(x)1)2+log(tan2(x)+1)4\frac{x}{2} - \frac{\log{\left(\tan{\left(x \right)} - 1 \right)}}{2} + \frac{\log{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{4}

      The result is: log(tan(x)1)+log(tan2(x)+1)2- \log{\left(\tan{\left(x \right)} - 1 \right)} + \frac{\log{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2}

  2. Now simplify:

    log(tan(x)1)+log(1cos2(x))2- \log{\left(\tan{\left(x \right)} - 1 \right)} + \frac{\log{\left(\frac{1}{\cos^{2}{\left(x \right)}} \right)}}{2}

  3. Add the constant of integration:

    log(tan(x)1)+log(1cos2(x))2+constant- \log{\left(\tan{\left(x \right)} - 1 \right)} + \frac{\log{\left(\frac{1}{\cos^{2}{\left(x \right)}} \right)}}{2}+ \mathrm{constant}


The answer is:

log(tan(x)1)+log(1cos2(x))2+constant- \log{\left(\tan{\left(x \right)} - 1 \right)} + \frac{\log{\left(\frac{1}{\cos^{2}{\left(x \right)}} \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                       
 |                        /       2   \                   
 | 1 + tan(x)          log\1 + tan (x)/                   
 | ---------- dx = C + ---------------- - log(-1 + tan(x))
 | 1 - tan(x)                 2                           
 |                                                        
/                                                         
log(tan2x+1)2log(tanx1){{\log \left(\tan ^2x+1\right)}\over{2}}-\log \left(\tan x-1\right)
The graph
0.001.000.100.200.300.400.500.600.700.800.90-5000050000
The answer [src]
nan
log(tan21+1)2log(tan11){{\log \left(\tan ^21+1\right)}\over{2}}-\log \left(\tan 1-1\right)
=
=
nan
NaN\text{NaN}
Numerical answer [src]
-1.5989832649916
-1.5989832649916
The graph
Integral of (1+tgx)/(1-tgx) dx

    Use the examples entering the upper and lower limits of integration.