Mister Exam

Other calculators


xsin(1/x)

Integral of xsin(1/x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |       /  1\   
 |  x*sin|1*-| dx
 |       \  x/   
 |               
/                
0                
$$\int\limits_{0}^{1} x \sin{\left(1 \cdot \frac{1}{x} \right)}\, dx$$
Integral(x*sin(1/x), (x, 0, 1))
The answer (Indefinite) [src]
  /                      /1\        /1\    2    /1\
 |                     Si|-|   x*cos|-|   x *sin|-|
 |      /  1\            \x/        \x/         \x/
 | x*sin|1*-| dx = C + ----- + -------- + ---------
 |      \  x/            2        2           2    
 |                                                 
/                                                  
$$\int x \sin{\left(1 \cdot \frac{1}{x} \right)}\, dx = C + \frac{x^{2} \sin{\left(\frac{1}{x} \right)}}{2} + \frac{x \cos{\left(\frac{1}{x} \right)}}{2} + \frac{\operatorname{Si}{\left(\frac{1}{x} \right)}}{2}$$
The graph
The answer [src]
Si(1)   cos(1)   sin(1)   pi
----- + ------ + ------ - --
  2       2        2      4 
$$- \frac{\pi}{4} + \frac{\cos{\left(1 \right)}}{2} + \frac{\sin{\left(1 \right)}}{2} + \frac{\operatorname{Si}{\left(1 \right)}}{2}$$
=
=
Si(1)   cos(1)   sin(1)   pi
----- + ------ + ------ - --
  2       2        2      4 
$$- \frac{\pi}{4} + \frac{\cos{\left(1 \right)}}{2} + \frac{\sin{\left(1 \right)}}{2} + \frac{\operatorname{Si}{\left(1 \right)}}{2}$$
Numerical answer [src]
0.378558237367188
0.378558237367188
The graph
Integral of xsin(1/x) dx

    Use the examples entering the upper and lower limits of integration.