Integral of x*sin(1/x) dx
The solution
The answer (Indefinite)
[src]
/ /1\ /1\ 2 /1\
| Si|-| x*cos|-| x *sin|-|
| /1\ \x/ \x/ \x/
| x*sin|-| dx = C + ----- + -------- + ---------
| \x/ 2 2 2
|
/
$$\int x \sin{\left(\frac{1}{x} \right)}\, dx = C + \frac{x^{2} \sin{\left(\frac{1}{x} \right)}}{2} + \frac{x \cos{\left(\frac{1}{x} \right)}}{2} + \frac{\operatorname{Si}{\left(\frac{1}{x} \right)}}{2}$$
Si(1) cos(1) sin(1) pi
----- + ------ + ------ - --
2 2 2 4
$$- \frac{\pi}{4} + \frac{\cos{\left(1 \right)}}{2} + \frac{\sin{\left(1 \right)}}{2} + \frac{\operatorname{Si}{\left(1 \right)}}{2}$$
=
Si(1) cos(1) sin(1) pi
----- + ------ + ------ - --
2 2 2 4
$$- \frac{\pi}{4} + \frac{\cos{\left(1 \right)}}{2} + \frac{\sin{\left(1 \right)}}{2} + \frac{\operatorname{Si}{\left(1 \right)}}{2}$$
Si(1)/2 + cos(1)/2 + sin(1)/2 - pi/4
Use the examples entering the upper and lower limits of integration.