Mister Exam

Derivative of xsin(1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /1\
x*sin|-|
     \x/
$$x \sin{\left(\frac{1}{x} \right)}$$
x*sin(1/x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the power rule: goes to

      The result of the chain rule is:

    The result is:


The answer is:

The graph
The first derivative [src]
     /1\         
  cos|-|         
     \x/      /1\
- ------ + sin|-|
    x         \x/
$$\sin{\left(\frac{1}{x} \right)} - \frac{\cos{\left(\frac{1}{x} \right)}}{x}$$
The second derivative [src]
    /1\ 
-sin|-| 
    \x/ 
--------
    3   
   x    
$$- \frac{\sin{\left(\frac{1}{x} \right)}}{x^{3}}$$
The third derivative [src]
   /1\        /1\
cos|-|   3*sin|-|
   \x/        \x/
------ + --------
   2        x    
  x              
-----------------
         3       
        x        
$$\frac{\frac{3 \sin{\left(\frac{1}{x} \right)}}{x} + \frac{\cos{\left(\frac{1}{x} \right)}}{x^{2}}}{x^{3}}$$
The graph
Derivative of xsin(1/x)