Mister Exam

Other calculators

Integral of x^2√(1-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |        ________   
 |   2   /      2    
 |  x *\/  1 - x   dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} x^{2} \sqrt{1 - x^{2}}\, dx$$
Integral(x^2*sqrt(1 - x^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                                     
 |                                                                                      
 |       ________          //               ________                                   \
 |  2   /      2           ||              /      2  /       2\                        |
 | x *\/  1 - x   dx = C + | -1, x < 1)|
/                          \\   8                 8                                    /
$$\int x^{2} \sqrt{1 - x^{2}}\, dx = C + \begin{cases} - \frac{x \left(1 - 2 x^{2}\right) \sqrt{1 - x^{2}}}{8} + \frac{\operatorname{asin}{\left(x \right)}}{8} & \text{for}\: x > -1 \wedge x < 1 \end{cases}$$
Numerical answer [src]
0.196349540849362
0.196349540849362

    Use the examples entering the upper and lower limits of integration.